Ejemplo n.º 1
0
def main():
    files = my.get_grouped_files(source_path=source_path,
                                 delay=delay,
                                 index_delay=index_delay)
    i = 1
    my_list_ble = dict()
    my_list_wifi = dict()
    my_list_total = dict()
    my_list_times = dict()  # cambio delay_wifi_send
    my_list_times_1 = dict()  # cambio delay_wifi_send
    for item in files:
        print("\x1b[1;30;43m " + str(i) + " \x1b[1;34;40m " + item[28:] +
              " \x1b[0m ")
        data = my.open_file_and_return_data(path=item)
        if i == 1:
            my_dictionary['_command'] = data['_command']
        l_ble, l_wifi, latency = statistics(data=data, run=i)
        t, t1 = get_times_change_delay(data['_time'],
                                       data['_command']['delay'],
                                       data['_info'])
        my_list_ble[i] = l_ble
        my_list_wifi[i] = l_wifi
        my_list_total[i] = latency
        my_list_times[i] = t
        my_list_times_1[i] = t1
        i += 1

    # Summary
    summary_statistics()
    save_statistics_data()

    # PLOT
    plot_1(my_list_ble, my_list_wifi, my_list_total, my_list_times,
           my_list_times_1)
Ejemplo n.º 2
0
def main():
    my_list_ble = dict()
    my_list_wifi = dict()
    for index_delay in range(len(delay)):
        source_path = my.path_media + "json_file/relay_" + str(relay[index_relay]) + "/delay_" + str(
            delay[index_delay]) + "/*_analysis.json"
        cuts_path = my.path_media + "json_file/relay_" + str(relay[index_relay]) + "/outcomes/cuts/delay_x_" + str(
            delay[index_delay]) + ".json"
        files = my.get_grouped_files(source_path=source_path, delay=delay, index_delay=index_delay)
        cuts = my.open_file_and_return_data(path=cuts_path)

        i = 1
        my_list_ble[delay[index_delay]] = dict()
        my_list_wifi[delay[index_delay]] = dict()
        for item in files:
            data = my.open_file_and_return_data(path=item)['_mex']
            l_ble, l_wifi = get_all_value_cuts(dataset=data, run=i, cut=cuts)
            my_list_ble[delay[index_delay]][i] = l_ble
            my_list_wifi[delay[index_delay]][i] = l_wifi
            i += 1

    df = get_list_and_return_df(my_list_ble, 'ble', 'latency')
    define_base_plot()
    # plot(df, "BLE", 'latency')
    smooth_interpolation(df, 'ble', 'latency')
Ejemplo n.º 3
0
def main():
    files = my.get_grouped_files(source_path=source_path,
                                 delay=delay,
                                 index_delay=index_delay)
    path = delay_path + "delay_" + str(delay[index_delay]) + ".json"
    data_delay = my.open_file_and_return_data(path=path)

    i = 1
    err = list()
    dictionaries = dict()
    data = dict()
    for item in files:
        data = my.open_file_and_return_data(path=item)
        print("\x1b[1;30;43m " + item[28:] + " \x1b[0m ")
        start = dt.datetime.strptime(data_delay[str(i)]['_info']['start'],
                                     '%Y-%m-%d %H:%M:%S.%f')
        end = dt.datetime.strptime(data_delay[str(i)]['_info']['end_sent'],
                                   '%Y-%m-%d %H:%M:%S.%f')
        # TODO shift focus about data --- duration 4 minute
        new_start = start + dt.timedelta(0, 30)  # right shift --> default 40 s
        new_end = new_start + dt.timedelta(0, 240)  # 4m <- (60s*4)
        # end = end - dt.timedelta(0, 15)
        new_diff = new_end - new_start
        h, m, s = my.convert_timedelta(new_diff)
        fault, outcome = analysis(data, new_start, new_end, i)
        print("start: {} -- end: {} --- {}:{}.{} -- min: {} -- max: {}".format(
            new_start, new_end, h, m, s, outcome['smaller'],
            outcome['bigger']))
        time = str(h) + ":" + str(m) + "." + str(s) + " [h:m.s]"
        outcome['time'] = {
            'old_start': start,
            'old_end': end,
            'new_start': new_start,
            'new_end': new_end,
            'new_time': time
        }
        err.append(fault)
        dictionaries[i] = outcome
        i += 1
    mex_removed = (60 * 1000) / delay[index_delay]
    total = data['_command']['n_mex'] - mex_removed
    print("\x1b[1;34;40m [{}] Mex_removed: {} --> total: {} \x1b[0m ".format(
        delay[index_delay], mex_removed, total))
    print("err: --> ", err)
    dictionaries['error'] = err
    dictionaries['info'] = {'mex_removed': mex_removed, 'n_mex': total}
    save_data(dictionaries)
Ejemplo n.º 4
0
def main():
    files = my.get_grouped_files(source_path=source_path, delay=delay, index_delay=index_delay)
    cuts = my.open_file_and_return_data(path=cuts_path)
    i = 1
    my_list_ble = dict()
    for item in files:
        print("\x1b[1;30;43m " + str(i) + " \x1b[1;34;40m " + item[28:] + " \x1b[0m ")
        data = my.open_file_and_return_data(path=item)
        if i == 1:
            my_dictionary['_command'] = data['_command']
        l_ble = statistics(data=data, run=i, x=cuts)
        my_list_ble[i] = l_ble
        i += 1

    # Summary
    summary_statistics()

    # PLOT
    plot_1(my_list_ble)
Ejemplo n.º 5
0
def main_cut():
    my_list_ble = dict()
    if directory == 'ble_wifi_output':
        my_list_wifi = dict()
        my_list_total = dict()

    for index_delay in range(len(delay)):
        source_path = my.path_media + "json_file/" + directory + "/relay_" + str(
            relay[index_relay]) + "/" + str(
                delay[index_delay]) + "/*_analysis.json"
        cuts_path = my.path_media + "json_file/" + directory + "/relay_" + str(
            relay[index_relay]) + "/x/delay_x_" + str(
                delay[index_delay]) + ".json"
        files = my.get_grouped_files(source_path=source_path,
                                     delay=delay,
                                     index_delay=index_delay)
        cuts = my.open_file_and_return_data(path=cuts_path)

        i = 1
        my_list_ble[delay[index_delay]] = dict()
        if directory == 'ble_wifi_output':
            my_list_wifi[delay[index_delay]] = dict()
            my_list_total[delay[index_delay]] = dict()

        for item in files:
            data = my.open_file_and_return_data(path=item)['_mex']
            if directory == 'ble_wifi_output':
                l_ble, l_wifi, l_total = get_all_value_cuts(dataset=data,
                                                            run=i,
                                                            cut=cuts)
                my_list_ble[delay[index_delay]][i] = l_ble
                my_list_wifi[delay[index_delay]][i] = l_wifi
                my_list_total[delay[index_delay]][i] = l_total
            else:
                l_ble = get_all_value_cuts_ble(dataset=data, run=i, cut=cuts)
                my_list_ble[delay[index_delay]][i] = l_ble
            i += 1

    plot(my_list_ble, "BLE")
    plot(my_list_wifi, "WiFi")
    plot(my_list_total, "BLE - WiFi")
Ejemplo n.º 6
0
def main_2():
    my_list = {'delay': list(), 'latency': list(), 'type': list()}
    for index_delay in range(len(delay)):
        source_path = my.path_media + "json_file/ble_wifi_output/relay_" + str(
            relay[index_relay]) + "/" + str(
                delay[index_delay]) + "/*_analysis.json"
        cuts_path = my.path_media + "json_file/ble_wifi_output/relay_" + str(
            relay[index_relay]) + "/x/delay_x_" + str(
                delay[index_delay]) + ".json"

        files = my.get_grouped_files(source_path=source_path,
                                     delay=delay,
                                     index_delay=index_delay)
        cuts = my.open_file_and_return_data(path=cuts_path)
        i = 1
        for item in files:
            data = my.open_file_and_return_data(path=item)
            pxs, pys, pzs = get_all_value_2(dataset=data, run=i, cut=cuts)
            my_list['delay'].append(pxs)
            my_list['latency'].append(pys)
            my_list['type'].append(pzs)
            i += 1

    pxs = list()
    pys = list()
    pzs = list()
    runs = len(my_list['delay'])
    for r in range(runs):
        item = len(my_list['delay'][r])
        for i in range(item):
            pxs.append(my_list['delay'][r][i])
            pys.append(my_list['latency'][r][i])
            pzs.append(my_list['type'][r][i])

    dataframe = {'delay': pxs, 'y_data': pys, 'type': pzs}
    df = pd.DataFrame(dataframe)
    print(df.head())
    plot_2(df)
Ejemplo n.º 7
0
def main_3():
    x = list()
    y = list()
    z = list()
    dictionary = dict()
    if directory == 'ble_output':
        tech = " - [BLE]"
    else:
        tech = " - [BLE - WiFi]"

    if type_graph == 'latency':
        y_label = 'Latency (s)'
        title = 'Latency' + tech
        name = directory[:-6] + 'latency.png'
    elif type_graph == 'pdr':
        y_label = 'Packet Delivery Ratio'
        title = y_label + tech
        name = directory[:-6] + 'pdr.png'
    else:
        y_label = 'Goodput (byte/s)'
        title = 'Goodput' + tech
        name = directory[:-6] + 'goodput.png'

    for r in range(len(relay)):
        dictionary[r] = {'x': list(), 'y': list()}
        for d in range(len(delay)):
            path = my.path_media + "json_file/" + directory + "/relay_" + str(
                relay[r]) + "/x/delay_XXX_" + str(delay[d]) + ".json"
            files = my.get_grouped_files(source_path=path,
                                         delay=delay,
                                         index_delay=d)

            i = 1
            for item in files:
                data = my.open_file_and_return_data(path=item)
                t = 'config_' + str(int(r + 1))
                z.append(t)
                time_ = convert_time_in_num(data['_command']['delay'])
                x.append(time_)
                dictionary[r]['x'].append(time_)

                if directory == 'ble_wifi_output':
                    if type_graph == 'latency':
                        value = data['summary']['statistic_']['total'][
                            type_graph]['mean']
                    else:
                        value = data['summary']['statistic_']['total'][
                            type_graph]
                else:
                    if type_graph == 'latency':
                        value = data['summary']['statistic_'][type_graph][
                            'mean']
                    else:
                        value = data['summary']['statistic_'][type_graph]

                y.append(value)
                dictionary[r]['y'].append(value)
                i += 1

    dataframe = {'delay': x, 'y_data': y, 'type': z}
    df = pd.DataFrame(dataframe)
    print(df.head())

    print("path: " + my.path_media + "json_file/" + directory + "/last_plot/")
    print("name: " + name)
    plot_3(df, dictionary, y_label, title)
    plot_x(df, dictionary, y_label, title)
Ejemplo n.º 8
0
def main_4():
    x = list()
    y = list()
    z = list()

    dir = ['ble_wifi_output', 'ble_output']
    dictionary = dict()

    if type_graph == 'latency':
        y_label = 'Latency (s)'
        title = 'Latency'
        name = 'mixed_latency.png'
    elif type_graph == 'pdr':
        y_label = 'Packet Delivery Ratio'
        title = y_label
        name = 'mixed_pdr.png'
    else:
        y_label = 'Goodput (byte/s)'
        title = 'Goodput'
        name = 'mixed_goodput.png'

    for d1 in dir:
        if d1 == 'ble_wifi_output':
            hue = 'ble_wifi'
        else:
            hue = 'ble'
        dictionary[hue] = dict()
        for r in range(len(relay)):
            dictionary[hue][r] = {'x': list(), 'y': list()}
            for d in range(len(delay)):
                path = my.path_media + "json_file/" + d1 + "/relay_" + str(
                    relay[r]) + "/x/delay_XXX_" + str(delay[d]) + ".json"

                files = my.get_grouped_files(source_path=path,
                                             delay=delay,
                                             index_delay=d)

                i = 1
                for item in files:
                    data = my.open_file_and_return_data(path=item)
                    t = hue + ' config_' + str(r)

                    if hue == 'ble_wifi':
                        if type_graph == 'latency':
                            value = data['summary']['statistic_']['total'][
                                type_graph]['mean']
                        else:
                            value = data['summary']['statistic_']['total'][
                                type_graph]
                    else:
                        if type_graph == 'latency':
                            value = data['summary']['statistic_'][type_graph][
                                'mean']
                        else:
                            value = data['summary']['statistic_'][type_graph]

                    time_ = convert_time_in_num(data['_command']['delay'])
                    x.append(time_)
                    y.append(value)
                    z.append(t)
                    dictionary[hue][r]['x'].append(time_)
                    dictionary[hue][r]['y'].append(value)
                    i += 1

    dataframe = {'delay': x, 'latency': y, 'type': z}
    df = pd.DataFrame(dataframe)
    # print(df)
    print("path: " + my.path_media + "json_file/" + directory + "/last_plot/")
    print("name: " + name)

    # colors = ['#4878D0', '#EE854A', '#6ACC64', '#D65F5F', '#82C6E2', '#D5BB67']
    # sns.set_palette(sns.color_palette(colors))

    xs_b_0 = np.linspace(min(dictionary['ble'][0]['x']),
                         max(dictionary['ble'][0]['x']), 100)
    xs_b_1 = np.linspace(min(dictionary['ble'][1]['x']),
                         max(dictionary['ble'][1]['x']), 100)
    xs_b_2 = np.linspace(min(dictionary['ble'][2]['x']),
                         max(dictionary['ble'][2]['x']), 100)
    xs_bw_0 = np.linspace(min(dictionary['ble_wifi'][0]['x']),
                          max(dictionary['ble_wifi'][0]['x']), 100)
    xs_bw_1 = np.linspace(min(dictionary['ble_wifi'][1]['x']),
                          max(dictionary['ble_wifi'][1]['x']), 100)
    xs_bw_2 = np.linspace(min(dictionary['ble_wifi'][2]['x']),
                          max(dictionary['ble_wifi'][2]['x']), 100)

    f_b_0 = sc.interpolate.interp1d(dictionary['ble'][0]['x'],
                                    dictionary['ble'][0]['y'],
                                    kind='linear')
    f_b_1 = sc.interpolate.interp1d(dictionary['ble'][1]['x'],
                                    dictionary['ble'][1]['y'],
                                    kind='linear')
    f_b_2 = sc.interpolate.interp1d(dictionary['ble'][2]['x'],
                                    dictionary['ble'][2]['y'],
                                    kind='linear')
    f_bw_0 = sc.interpolate.interp1d(dictionary['ble_wifi'][0]['x'],
                                     dictionary['ble_wifi'][0]['y'],
                                     kind='linear')
    f_bw_1 = sc.interpolate.interp1d(dictionary['ble_wifi'][1]['x'],
                                     dictionary['ble_wifi'][1]['y'],
                                     kind='linear')
    f_bw_2 = sc.interpolate.interp1d(dictionary['ble_wifi'][2]['x'],
                                     dictionary['ble_wifi'][2]['y'],
                                     kind='linear')

    sns.set_context('notebook')
    sns.lmplot(
        x='delay',
        y='latency',
        data=df,
        palette='muted',
        fit_reg=False,
        ci=None,
        legend_out=False,
        # hue='type',
        height=4,
        aspect=2,
        markers=".",
        scatter_kws={"s": 30})

    # plot line
    plt.plot(xs_b_0, f_b_0(xs_b_0), '-.', color='#D65F5F')  # red
    plt.plot(xs_b_1, f_b_1(xs_b_1), '-.', color='#956CB4')  # purple
    plt.plot(xs_b_2, f_b_2(xs_b_2), '-.', color='#8C613C')  # brown
    plt.plot(xs_bw_0, f_bw_0(xs_bw_0), '--', color='#4878D0')  # blue
    plt.plot(xs_bw_1, f_bw_1(xs_bw_1), '--', color='#EE854A')  # orange
    plt.plot(xs_bw_2, f_bw_2(xs_bw_2), '--', color='#6ACC64')  # green

    # plot point
    plt.plot(dictionary['ble'][0]['x'],
             dictionary['ble'][0]['y'],
             'o',
             markersize=6,
             color='#D65F5F',
             label="ble config_0")  # red
    plt.plot(dictionary['ble'][1]['x'],
             dictionary['ble'][1]['y'],
             'o',
             markersize=6,
             color='#956CB4',
             label="ble config_1")  # purple
    plt.plot(dictionary['ble'][2]['x'],
             dictionary['ble'][2]['y'],
             'o',
             markersize=6,
             color='#8C613C',
             label="ble confgi_2")  # brown
    plt.plot(dictionary['ble_wifi'][0]['x'],
             dictionary['ble_wifi'][0]['y'],
             'D',
             markersize=6,
             color='#4878D0',
             label="ble_wifi config_0")  # blue
    plt.plot(dictionary['ble_wifi'][1]['x'],
             dictionary['ble_wifi'][1]['y'],
             'D',
             markersize=6,
             color='#EE854A',
             label="ble_wifi config_1")  # orange
    plt.plot(dictionary['ble_wifi'][2]['x'],
             dictionary['ble_wifi'][2]['y'],
             'D',
             markersize=6,
             color='#6ACC64',
             label="ble_wifi config_2")  # green

    plt.legend(loc='best')

    my_point = list()
    my_label = list()
    delay.reverse()
    for i in range(len(delay)):
        my_point.append(i + 1)
        frequency = 1 / (delay[i] / 1000)
        my_label.append(round(frequency, 2))
    plt.xticks(my_point, my_label, rotation=30)

    plt.xlabel("Frequency (Hz)", fontsize=16)
    plt.ylabel(y_label, fontsize=16)

    # plt.title(title)
    sns.despine(
    )  # is a function that removes the spines from the right and upper portion of the plot by default.
    plt.show()
Ejemplo n.º 9
0
def main_5():
    x = dict()
    y = list()
    z = list()
    l_1 = list()
    l_2 = list()
    if directory == 'ble_output':
        raise Exception('wrong - directory- ')

    r = 0
    for d in range(len(delay)):
        path = my.path_media + "json_file/" + directory + "/relay_" + str(
            relay[r]) + "/x/delay_XXX_" + str(delay[d]) + ".json"
        files = my.get_grouped_files(source_path=path,
                                     delay=delay,
                                     index_delay=d)

        for item in files:
            data = my.open_file_and_return_data(path=item)

            time_ = (data['_command']['delay'])
            ble = data['summary']['mex_']['ble']['R']
            wifi = data['summary']['mex_']['wifi']['R']
            total = data['summary']['mex_']['total']['R']
            p_ble = ble * 100 / total
            p_wifi = wifi * 100 / total
            x[time_] = list()
            x[time_].append(p_ble)
            z.append('ble')
            x[time_].append(p_wifi)
            z.append('wifi')

            l_1.append(time_)
            y.append(p_ble)
            l_2.append(100)

    dataframe = {'total': l_2, 'ble': y, 'delay': l_1}
    df = pd.DataFrame(dataframe)
    print(df)
    fig_dims = (10, 4)

    fig, ax = plt.subplots(figsize=fig_dims)
    sns.set_context('notebook')
    sns.set_color_codes("muted")
    sns.barplot(x='delay', y='total', data=df, label="total", color='b', ax=ax)

    sns.set_color_codes("muted")
    sns.barplot(x='delay', y='ble', data=df, label="ble", color='y', ax=ax)
    sns.despine()
    plt.show()
    print("--")

    dataframe = {
        'type': ['ble', 'wifi'],
        '50': x[50],
        '100': x[100],
        '150': x[150],
        '200': x[200],
        '250': x[250],
        '500': x[500],
        '1000': x[1000]
    }

    df = pd.DataFrame(dataframe)
    print(df.head())

    sns.set_context('notebook')
    df.set_index('type').T.plot(kind='bar', stacked=True)
    plt.legend(loc='best')

    my_point = list()
    my_label = list()
    delay.reverse()
    for i in range(len(delay)):
        my_point.append(i + 1)
        frequency = 1 / (delay[i] / 1000)
        my_label.append(round(frequency, 2))

    plt.xticks(my_point, my_label, rotation=30)

    plt.xlabel("Frequency (Hz)", fontsize=16)
    plt.ylabel("Percentage", fontsize=16)

    # plt.title(title)
    sns.despine(
    )  # is a function that removes the spines from the right and upper portion of the plot by default.
    plt.show()