def run_optimisation(current_range, freq_range, power_range):
    parameter_space = ParameterSpace([\
        ContinuousParameter('current', current_range[0], current_range[1]), \
        ContinuousParameter('freq', freq_range[0], freq_range[1]), \
        ContinuousParameter('power', power_range[0], power_range[1])
        ])

    def function(X):
        current = X[:, 0]
        freq = X[:, 1]
        power = X[:, 2]
        out = np.zeros((len(current), 1))
        for g in range(len(current)):
            '''
            Set JPA Current, Frequency & Power
            '''
            out[g, 0] = -get_SNR(
                plot=False)[-1]  #Negative as want to maximise SNR
        return out

    num_data_points = 10

    design = RandomDesign(parameter_space)
    X = design.get_samples(num_data_points)
    Y = function(X)

    model_gpy = GPRegression(X, Y)
    model_gpy.optimize()
    model_emukit = GPyModelWrapper(model_gpy)

    exp_imprv = ExpectedImprovement(model=model_emukit)
    optimizer = GradientAcquisitionOptimizer(space=parameter_space)
    point_calc = SequentialPointCalculator(exp_imprv, optimizer)
    coords = []
    min = []

    bayesopt_loop = BayesianOptimizationLoop(model=model_emukit,
                                             space=parameter_space,
                                             acquisition=exp_imprv,
                                             batch_size=1)

    stopping_condition = FixedIterationsStoppingCondition(i_max=100)

    bayesopt_loop.run_loop(q, stopping_condition)

    coord_results = bayesopt_loop.get_results().minimum_location
    min_value = bayesopt_loop.get_results().minimum_value
    step_results = bayesopt_loop.get_results().best_found_value_per_iteration
    print(coord_results)
    print(min_value)

    return coord_results, abs(min_value)
def test_loop():
    n_iterations = 5

    x_init = np.random.rand(5, 1)
    y_init = np.random.rand(5, 1)

    # Make GPy model
    gpy_model = GPy.models.GPRegression(x_init, y_init)
    model = GPyModelWrapper(gpy_model)

    space = ParameterSpace([ContinuousParameter('x', 0, 1)])
    acquisition = ExpectedImprovement(model)

    # Make loop and collect points
    bo = BayesianOptimizationLoop(model=model, space=space, acquisition=acquisition)
    bo.run_loop(UserFunctionWrapper(f), FixedIterationsStoppingCondition(n_iterations))

    # Check we got the correct number of points
    assert bo.loop_state.X.shape[0] == n_iterations + 5

    # Check the obtained results
    results = bo.get_results()

    assert results.minimum_location.shape[0] == 1
    assert results.best_found_value_per_iteration.shape[0] == n_iterations + 5
def test_loop():
    n_iterations = 5

    x_init = np.random.rand(5, 1)
    y_init = np.random.rand(5, 1)

    # Make GPy model
    gpy_model = GPy.models.GPRegression(x_init, y_init)
    model = GPyModelWrapper(gpy_model)

    space = ParameterSpace([ContinuousParameter('x', 0, 1)])
    acquisition = ExpectedImprovement(model)

    # Make loop and collect points
    bo = BayesianOptimizationLoop(model=model,
                                  space=space,
                                  acquisition=acquisition)
    bo.run_loop(UserFunctionWrapper(f),
                FixedIterationsStoppingCondition(n_iterations))

    # Check we got the correct number of points
    assert bo.loop_state.X.shape[0] == n_iterations + 5

    # Check the obtained results
    results = bo.get_results()

    assert results.minimum_location.shape[0] == 1
    assert results.best_found_value_per_iteration.shape[0] == n_iterations + 5
Ejemplo n.º 4
0
def bayesian_opt():

    # 2. ranges of the synth parameters
    syn1 = syn2 = syn3 = syn4 = syn5 = np.arange(158)
    syn6 = np.arange(6000)
    syn7 = np.arange(1000)
    syn8 = np.arange(700)

    # 2. synth paramters ranges into an 8D parameter space
    # parameter_space = ParameterSpace(
    #     [ContinuousParameter('x1', 0., 157.)])

    # parameter_space = ParameterSpace(
    #     [DiscreteParameter('x8', syn8)])

    parameter_space = ParameterSpace(
        [ContinuousParameter('x1', 0., 157.), ContinuousParameter('x2', 0., 157.), ContinuousParameter('x3', 0., 157.),
         ContinuousParameter('x4', 0., 157.), ContinuousParameter('x5', 0., 157.), ContinuousParameter('x6', 0., 5999.),
         ContinuousParameter('x7', 0., 999.), ContinuousParameter('x8', 0., 699.)])

    # parameter_space = ParameterSpace(
    #     [DiscreteParameter('x1', syn1), DiscreteParameter('x2', syn2), DiscreteParameter('x3', syn3),
    #      DiscreteParameter('x4', syn4), DiscreteParameter('x5', syn5), DiscreteParameter('x6', syn6),
    #      DiscreteParameter('x7', syn1), DiscreteParameter('x8', syn8)])

    # 3. collect random points
    design = RandomDesign(parameter_space)

    X = design.get_samples(num_data_points)  # X is a numpy array
    print("X=", X)

    # [is the below needed?]
    # UserFunction.evaluate(training_function, X)
    # I put UserFunctionWrapper in line 94

    # 4. define training_function as Y
    Y = training_function(X)

    # [is this needed?]
    # loop_state = create_loop_state(X, Y)

    # 5. train and wrap the model in Emukit
    model_gpy = GPRegression(X, Y, normalizer=True)

    model_emukit = GPyModelWrapper(model_gpy)
    expected_improvement = ExpectedImprovement(model=model_emukit)
    bayesopt_loop = BayesianOptimizationLoop(model=model_emukit,
                                             space=parameter_space,
                                             acquisition=expected_improvement,
                                             batch_size=5)

    max_iterations = 15
    bayesopt_loop.run_loop(training_function, max_iterations)
    model_gpy.plot()
    plt.show()
    results = bayesopt_loop.get_results()
    # bayesopt_loop.loop_state.X
    print("X: ", bayesopt_loop.loop_state.X)
    print("Y: ", bayesopt_loop.loop_state.Y)
    print("cost: ", bayesopt_loop.loop_state.cost)
Ejemplo n.º 5
0
exp_imprv = ExpectedImprovement(model = model_emukit)
optimizer = GradientAcquisitionOptimizer(space = parameter_space)
point_calc = SequentialPointCalculator(exp_imprv,optimizer)

# Bayesian optimisation routine
bayesopt_loop = BayesianOptimizationLoop(model = model_emukit,
                                         space = parameter_space,
                                         acquisition=exp_imprv,
                                         batch_size=1)

stopping_condition = FixedIterationsStoppingCondition(i_max = no_BO_sims)
bayesopt_loop.run_loop(q, stopping_condition)


# Results of Bayesian optimisation
coord_results  = bayesopt_loop.get_results().minimum_location
min_value = bayesopt_loop.get_results().minimum_value
step_results = bayesopt_loop.get_results().best_found_value_per_iteration
print(coord_results)
print(min_value)

# Save the pararmeters of the best resonator
results = [coord_results,min_value]
results_file = open('results.txt','w')
results_file.write(str(results))
results_file.close()

# Save the entire results of the model
data = model_emukit.model.to_dict()
with open('model_data.txt','w') as outfile:
    json.dump(data,outfile)
Ejemplo n.º 6
0
def bo_loop(config, image_path, ai_model=None):
    target_function, space = eval(config.name)()
    data_dim = config.data_dim
    num_mix = config.num_mix
    init_num_data = config.init_num_data
    interval_std = config.interval_std
    interval = np.zeros((1, data_dim))
    std = np.zeros((1, data_dim))
    mean = np.zeros((1, data_dim))
    #set up data, scaling
    for ii in range(data_dim):
        interval[0, ii] = space.parameters[ii].max - space.parameters[ii].min
        std[0, ii] = interval[0, ii] / interval_std
        mean[0, ii] = (space.parameters[ii].max + space.parameters[ii].min) / 2
        space.parameters[ii].min = (space.parameters[ii].min -
                                    mean[0, ii]) / std[0, ii]
        space.parameters[ii].max = (space.parameters[ii].max -
                                    mean[0, ii]) / std[0, ii]

    results_list = [None] * config.repeated_runs
    best_value_per_iter = np.zeros((config.repeated_runs, config.bo_iter))
    npr = np.random.RandomState(123)
    for ii in tqdm(range(config.repeated_runs)):
        #initialize data points
        X_init = (npr.rand(init_num_data, data_dim) - 0.5) * interval + mean
        X_init_norm = (X_init - mean) / std
        Y_init = target_function(X_init)
        Y_init_norm, mean_Y, std_Y = standardize(Y_init)

        # normalized function
        function_norm = lambda x: (target_function(x * std + mean) - mean_Y
                                   ) / std_Y

        if config.is_GPY:
            kernel = GPy.kern.RBF(input_dim=data_dim,
                                  variance=npr.rand(1),
                                  lengthscale=npr.rand(data_dim),
                                  ARD=True)
            for jj in range(num_mix - 1):
                rbf_new = GPy.kern.RBF(input_dim=data_dim,
                                       variance=npr.rand(1),
                                       lengthscale=npr.rand(data_dim),
                                       ARD=True)
                kernel = kernel + rbf_new
            if config.is_sparseGP:
                z = (np.random.rand(config.num_inducing_pts, data_dim) -
                     0.5) * interval_std
                model_gp = GPy.models.SparseGPRegression(X_init_norm,
                                                         Y_init_norm,
                                                         kernel,
                                                         Z=z)
            else:
                model_gp = GPy.models.GPRegression(X_init_norm, Y_init_norm,
                                                   kernel)

            model_gp.Gaussian_noise.variance = config.epsilon
            model_gp.Gaussian_noise.variance.fix()
            model_emukit = GPyModelWrapperTime(model_gp)
            model_emukit.optimize()
        else:
            #Set up Emukit_BO_BQ_GP_Model
            model_emukit = Emukit_BO_BQ_GP_Model(X_init_norm, Y_init_norm,
                                                 config, ai_model)
            model_emukit.optimize()
            model_emukit.set_kernel()

        expected_improvement = ExpectedImprovement(model=model_emukit)

        bayesopt_loop = BayesianOptimizationLoop(
            model=model_emukit,
            space=space,
            acquisition=expected_improvement,
            batch_size=1)
        max_iterations = config.bo_iter
        bayesopt_loop.run_loop(function_norm, max_iterations)
        results = bayesopt_loop.get_results()
        #scale back the x and y
        results_save = edict()
        results_save.best_found_value_per_iteration = results.best_found_value_per_iteration[
            init_num_data:] * std_Y.item() + mean_Y.item()
        best_value_per_iter[
            ii, :] = results_save.best_found_value_per_iteration
        results_save.minimum_value = results.minimum_value * std_Y.item(
        ) + mean_Y.item()
        results_save.minimum_location = results.minimum_location * std.squeeze(
            0) + mean.squeeze(0)
        results_save.time_elapsed = model_emukit.time_count
        results_list[ii] = results_save

    best_value_mean = np.mean(best_value_per_iter, 0)
    best_value_std = np.std(best_value_per_iter, 0)
    plt.figure(figsize=(12, 8))
    plt.fill_between(np.arange(max_iterations) + 1,
                     best_value_mean - 0.2 * best_value_std,
                     best_value_mean + 0.2 * best_value_std,
                     color='red',
                     alpha=0.15)
    plt.plot(np.arange(max_iterations) + 1,
             best_value_mean,
             'or-',
             lw=2,
             label='Best found function value')
    plt.legend(loc=2, prop={'size': LEGEND_SIZE})
    plt.xlabel(r"iteration")
    plt.ylabel(r"$f(x)$")
    plt.grid(True)
    plt.savefig(image_path, format='pdf')

    return results_list
Ejemplo n.º 7
0
model_wrapped = GPyModelWrapper(model)
target = user_sample_vector
acq = L2_LCB(model=model_wrapped, target=target)

fit_update = lambda a, b: model.optimize_restarts(verbose=False)
bayesopt_loop = BayesianOptimizationLoop(model=model_wrapped,
                                         space=parameter_space,
                                         acquisition=acq)
bayesopt_loop.iteration_end_event.append(fit_update)
bayesopt_loop.run_loop(training_function, 5)

# 5. train and wrap the model in Emukit
# model_gpy = GPRegression(X, Y, normalizer=True)
#
# model_emukit = GPyModelWrapper(model_gpy)
# expected_improvement = ExpectedImprovement(model=model_emukit)
# bayesopt_loop = BayesianOptimizationLoop(model=model_emukit,
#                                          space=parameter_space,
#                                          acquisition=expected_improvement,
#                                          batch_size=5)
#
# max_iterations = 15
# bayesopt_loop.run_loop(training_function, max_iterations)
model_wrapped.plot()
plt.show()
results = bayesopt_loop.get_results()
# bayesopt_loop.loop_state.X
print("X: ", bayesopt_loop.loop_state.X)
print("Y: ", bayesopt_loop.loop_state.Y)
print("cost: ", bayesopt_loop.loop_state.cost)