Ejemplo n.º 1
0
plt.plot(binsm[:-1], gen_mass_hist_diff, label='Generated', color='blue')
plt.xlabel('Mass', x=0.5)
plt.ylabel('# Exact - # EFP Jets')
lg = plt.legend(loc=1, prop={'size': 18})
plt.savefig(figpath + "_100000_jets_mass_diff.pdf", bbox_inches='tight')
plt.show()

num_pixels = 100
Njets = 100000
img_width = 0.8

average_real_jet_image = np.zeros((num_pixels, num_pixels, 1))
for i in range(Njets):
    average_real_jet_image += ut.pixelate(X_efp_format[i, :, :],
                                          npix=num_pixels,
                                          img_width=img_width,
                                          nb_chan=1,
                                          norm=False,
                                          charged_counts_only=False)
average_real_jet_image /= Njets

average_gen_jet_image = np.zeros((num_pixels, num_pixels, 1))
for i in range(Njets):
    average_gen_jet_image += ut.pixelate(gen_out_efp_format[i, :, :],
                                         npix=num_pixels,
                                         img_width=img_width,
                                         nb_chan=1,
                                         norm=False,
                                         charged_counts_only=False)
average_gen_jet_image /= Njets

plt.rcParams.update({'font.size': 12})
Ejemplo n.º 2
0
################################################################################

# load data
X, y = qg_jets.load(num_data=num_data)

# convert labels to categorical
Y = to_categorical(y, num_classes=2)

print('Loaded quark and gluon jets')

# make jet images
images = np.asarray([
    pixelate(x,
             npix=npix,
             img_width=img_width,
             nb_chan=nb_chan,
             charged_counts_only=True,
             norm=norm) for x in X
])

print('Done making jet images')

# do train/val/test split
(X_train, X_val, X_test, Y_train, Y_val, Y_test) = data_split(images,
                                                              Y,
                                                              val=val_frac,
                                                              test=test_frac)

print('Done train/val/test split')

# preprocess by zero centering images and standardizing each pixel
Ejemplo n.º 3
0
dataset = dataset.detach().numpy()
_ = plt.hist(dataset[:, :, 0].reshape(-1), bins=bins[0], histtype='step')

datasett = torch.load('datasets/all_t_jets_30p_polarrel.pt')
X = datasett.detach().numpy()
X_efp_format = np.concatenate(
    (np.expand_dims(X[:, :, 2], 2), X[:, :, :2], np.zeros((len(X), 30, 1))),
    axis=2)

Xims = []
for i in tqdm(range(len(X))):
    Xims.append(
        ut.pixelate(X_efp_format[i, :, :],
                    npix=25,
                    img_width=0.85,
                    nb_chan=1,
                    norm=False,
                    charged_counts_only=False))

datasetg = torch.load('datasets/all_g_jets_30p_polarrel.pt')
Xg = datasetg.detach().numpy()
Xg_efp_format = np.concatenate(
    (np.expand_dims(Xg[:, :, 2], 2), Xg[:, :, :2], np.zeros((len(Xg), 30, 1))),
    axis=2)

Xgims = []
for i in tqdm(range(len(Xg))):
    Xgims.append(
        ut.pixelate(Xg_efp_format[i, :, :],
                    npix=25,
                    img_width=0.85,
Ejemplo n.º 4
0
# network training parameters
num_epoch = 2
batch_size = 100

################################################################################

# load data
X, y = cepc.load(num_data=num_data)

# convert labels to categorical
Y = to_categorical(y, num_classes=2)

print('Loaded quark and gluon jets')

# make jet images
images = np.asarray([pixelate(x, npix=npix, img_width=img_width, nb_chan=nb_chan, norm=norm,charged_counts_only=True) for x in X])

print('Done making jet images')

# do train/val/test split 
(X_train, X_val, X_test,
 Y_train, Y_val, Y_test) = data_split(images, Y, val=val_frac, test=test_frac)

print('Done train/val/test split')

# preprocess by zero centering images and standardizing each pixel
X_train, X_val, X_test = standardize(*zero_center(X_train, X_val, X_test))

print('Finished preprocessing')
print('Model summary:')