Ejemplo n.º 1
0
def execute_testcases(submission_file, submission_id, problem):
    base_dir = Path(settings.MEDIA_ROOT).resolve()
    source_path = base_dir / submission_file
    testcases = TestCase.objects.filter(problem=problem)
    response = {}
    for testcase in testcases:
        testcase_path = base_dir / testcase.testcase.name
        output_path = base_dir / 'user_output' / (str(submission_id) +
                                                  str(testcase.id))
        engine = Engine(source_path=source_path,
                        testcase_path=testcase_path,
                        output_path=output_path)
        try:
            id = testcase.id
            engine.process()
        except Engine.CompileError:
            response[id] = 'error'
        except Engine.TimeOut:
            response[id] = 'TLE'
        else:
            if engine.check_output(output_path):
                response[id] = 'AC'
            else:
                response[id] = 'WA'
        current_task.update_state(state="PROGRESS", meta=response)
    return response
Ejemplo n.º 2
0
    def find_sort_concepts(self, passages, query):
        millis = int(round(time.time() * 1000))
        source = ListSource(list_docs=passages,
                            list_query=[],
                            language=self.language,
                            info=millis)
        source.preprocessor.use_stop_words = True
        source.preprocessor.save = False
        source.preprocessor.reduce = True
        source.preprocessor.pos_tag = False
        source.preprocessor.expand_terms = True
        index = source.preprocessor.get_representation_docs(force=True,
                                                            do_idf=False,
                                                            type_tf=3,
                                                            norm=None)
        query_processor = QueryProcessor(expanded=False,
                                         reduce=True,
                                         preprocessor=source.preprocessor)
        search_model = VectorSearch()
        search_model.set_index(index)
        self.engine = Engine(source,
                             query_processor,
                             search_model,
                             free_search=True)
        query_result = self.engine.search(query)
        docs_list_retrieval = [
            source.read_doc(d)
            for d in query_result.docs_retrieval[:self.n_passages]
        ]
        concepts = []
        for d in docs_list_retrieval:
            concepts.extend(self.make_concepts(d.text))

        return list(set(c for c in concepts))
Ejemplo n.º 3
0
def execute(base_dir, source_path, testcase_path, output_path):
    response = ''
    engine = Engine(source_path=source_path,
                    testcase_path=testcase_path,
                    output_path=output_path)
    try:
        engine.process()
    except Engine.CompileError:
        response = 'error'
    except Engine.TimeOut:
        response = 'TLE'
    else:
        if engine.check_output(output_path):
            response = 'AC'
        else:
            response = 'WA'
    return response
Ejemplo n.º 4
0
def run(request):
    if request.method == 'GET':
        return render(request, 'service/run.html')
    else:
        source_code = request.FILES['source_code']
        test_case = request.FILES['test_case']
        expected_out = request.FILES['expected_out']

        source_code = save_file(source_code, '.py')
        test_case = save_file(test_case)
        expected_out = save_file(expected_out)

        output_path = Path(settings.MEDIA_ROOT) / 'tmp/' / str(uuid.uuid1())

        engine = Engine(source_path=source_code,
                        testcase_path=test_case,
                        output_path=output_path)

        try:
            engine.process()
        except:
            pass
        else:
            engine.check_output(expected_out)

        # remove(source_code)
        # remove(test_case)
        # remove(expected_out)
        # remove(output_path)

        return HttpResponse(engine.result)
Ejemplo n.º 5
0
def search_basic(source, text, engine=None, total_result=100):
    if not engine:
        preprocess = source.preprocessor
        preprocess.expand_terms = True
        index = preprocess.get_representation_docs()

        query_processor = QueryProcessor(preprocessor=preprocess)

        search_model = BM25Search()
        search_model.set_index(index)

        engine = Engine(source,
                        query_processor,
                        search_model,
                        free_search=True)

    query_result = engine.search(text)
    preprocess.expand_terms = False
    docs_list_retrieval = [
        source.read_doc(engine.index.get_doc_item(d).id)
        for d in query_result.docs_retrieval[:total_result]
    ]
    return docs_list_retrieval
def main():
    #If the television screen is 1920 x 1080
    #and the window of the game is 720 x 480
    #Then the engine will scale every item according to 1920 / 720 & 1080 / 480 ratio
    #Keep in mind to use the engine's blit function because it also
    #scales the position offset according to 1920 / 720 & 1080 / 480 ratio
    window = Engine((720, 480), FPS=60)
    window.get_music(
        'music/empty.ogg'
    )  #The engine plays music in the clear method, so load an (empty) ogg file

    background = window.load_image("img/background.png")

    while True:
        window.clear(
        )  #Fills the window with a black background and retreives events
        window.blit(background)  #Blit a scaled image to position (0,0)
        window.safe_zone(
        )  #Show the safe_zone for ouya television screens ( 5% )
        window.stop(
        )  #If pressed escape button or controller.BUTTON_A exit the game

        if window.get_left_stick() != (0.0, 0.0):  #For clean logging
            print("Controller > LSTICK : ", (window.get_left_stick()))

        if window.get_right_stick() != (0.0, 0.0):  #For clean logging
            print("Controller > RSTICK : ", (window.get_right_stick()))

        if window.down(window.controller.BUTTON_O):
            print("Controller >   DOWN : BUTTON_O")
        elif window.motion(window.controller.BUTTON_O):
            print("Controller > MOTION : BUTTON_O")
        elif window.up(window.controller.BUTTON_O):
            print("Controller >     UP : BUTTON_O")

        if window.down(window.controller.BUTTON_U):
            print("Controller >   DOWN : BUTTON_U")
        elif window.motion(window.controller.BUTTON_U):
            print("Controller > MOTION : BUTTON_U")
        elif window.up(window.controller.BUTTON_U):
            print("Controller >     UP : BUTTON_U")

        if window.down(window.controller.BUTTON_Y):
            print("Controller >   DOWN : BUTTON_Y")
        elif window.motion(window.controller.BUTTON_Y):
            print("Controller > MOTION : BUTTON_Y")
        elif window.up(window.controller.BUTTON_Y):
            print("Controller >     UP : BUTTON_Y")

        if window.down(window.controller.BUTTON_A):
            print("Controller >   DOWN : BUTTON_A")
        elif window.motion(window.controller.BUTTON_A):
            print("Controller > MOTION : BUTTON_A")
        elif window.up(window.controller.BUTTON_A):
            print("Controller >     UP : BUTTON_A")

        if window.down(window.controller.BUTTON_L1):
            print("Controller >   DOWN : BUTTON_L1")
        elif window.motion(window.controller.BUTTON_L1):
            print("Controller > MOTION : BUTTON_L1")
        elif window.up(window.controller.BUTTON_L1):
            print("Controller >     UP : BUTTON_L1")

        if window.down(window.controller.BUTTON_L2):
            print("Controller >   DOWN : BUTTON_L2")
        elif window.motion(window.controller.BUTTON_L2):
            print("Controller > MOTION : BUTTON_L2")
        elif window.up(window.controller.BUTTON_L2):
            print("Controller >     UP : BUTTON_L2")

        if window.down(window.controller.BUTTON_L3):
            print("Controller >   DOWN : BUTTON_L3")
        elif window.motion(window.controller.BUTTON_L3):
            print("Controller > MOTION : BUTTON_L3")
        elif window.up(window.controller.BUTTON_L3):
            print("Controller >     UP : BUTTON_L3")

        if window.down(window.controller.BUTTON_R1):
            print("Controller >   DOWN : BUTTON_R1")
        elif window.motion(window.controller.BUTTON_R1):
            print("Controller > MOTION : BUTTON_R1")
        elif window.up(window.controller.BUTTON_R1):
            print("Controller >     UP : BUTTON_R1")

        if window.down(window.controller.BUTTON_R2):
            print("Controller >   DOWN : BUTTON_R2")
        elif window.motion(window.controller.BUTTON_R2):
            print("Controller > MOTION : BUTTON_R2")
        elif window.up(window.controller.BUTTON_R2):
            print("Controller >     UP : BUTTON_R2")

        if window.down(window.controller.BUTTON_R3):
            print("Controller >   DOWN : BUTTON_R3")
        elif window.motion(window.controller.BUTTON_R3):
            print("Controller > MOTION : BUTTON_R3")
        elif window.up(window.controller.BUTTON_R3):
            print("Controller >     UP : BUTTON_R3")

        if window.down(window.controller.BUTTON_DPAD_UP):
            print("Controller >   DOWN : BUTTON_DPAD_UP")
        elif window.motion(window.controller.BUTTON_DPAD_UP):
            print("Controller > MOTION : BUTTON_DPAD_UP")
        elif window.up(window.controller.BUTTON_DPAD_UP):
            print("Controller >     UP : BUTTON_DPAD_UP")

        if window.down(window.controller.BUTTON_DPAD_DOWN):
            print("Controller >   DOWN : BUTTON_DPAD_DOWN")
        elif window.motion(window.controller.BUTTON_DPAD_DOWN):
            print("Controller > MOTION : BUTTON_DPAD_DOWN")
        elif window.up(window.controller.BUTTON_DPAD_DOWN):
            print("Controller >     UP : BUTTON_DPAD_DOWN")

        if window.down(window.controller.BUTTON_DPAD_LEFT):
            print("Controller >   DOWN : BUTTON_DPAD_LEFT")
        elif window.motion(window.controller.BUTTON_DPAD_LEFT):
            print("Controller > MOTION : BUTTON_DPAD_LEFT")
        elif window.up(window.controller.BUTTON_DPAD_LEFT):
            print("Controller >     UP : BUTTON_DPAD_LEFT")

        if window.down(window.controller.BUTTON_DPAD_RIGHT):
            print("Controller >   DOWN : BUTTON_DPAD_RIGHT")
        elif window.motion(window.controller.BUTTON_DPAD_RIGHT):
            print("Controller > MOTION : BUTTON_DPAD_RIGHT")
        elif window.up(window.controller.BUTTON_DPAD_RIGHT):
            print("Controller >     UP : BUTTON_DPAD_RIGHT")

        if window.down(window.controller.BUTTON_MENU):
            print("Controller >   DOWN : BUTTON_MENU")
        elif window.motion(window.controller.BUTTON_MENU):
            print("Controller > MOTION : BUTTON_MENU")
        elif window.up(window.controller.BUTTON_MENU):
            print("Controller >     UP : BUTTON_MENU")

        window.update(
        )  #Updates the events, renders images and ticks the FPS Clock

    pygame.quit()
    exit()
Ejemplo n.º 7
0
def run():
    """
    This method start Engine
    including simulator, process, report generator.
    """
    Engine().start()
Ejemplo n.º 8
0
class AnalysisContextLocal(QueryProcessor):
    '''
        Algorithm of Analysis Context Local
    '''
    def __init__(self,
                 top_docs=None,
                 window_size=300,
                 n_top_ranked=10,
                 n_passages=50,
                 m_concept=5,
                 factor=0.0001,
                 preprocessor=None):
        self.top_docs = top_docs
        self.window_size = window_size
        self.n_passages = n_passages
        self.m_concept = m_concept
        self.n_top_ranked = n_top_ranked
        self.factor = factor
        self.engine = None
        self.language = preprocessor.lang
        self.model = None
        self.passages = []
        super(AnalysisContextLocal, self).__init__(expanded=True,
                                                   reduce=True,
                                                   top_docs=top_docs,
                                                   limit=m_concept,
                                                   preprocessor=preprocessor)

    @property
    def info(self):
        return 'acl-exp'

    def find_passage(self, window_size, document):
        list_passages = []
        if window_size:
            list_passages = [
                ' '.join(ck)
                for ck in chunks(document.text.split(), window_size)
            ]
        else:
            list_passages_tmp = [
                p for p in re.split(r"[.!?;]\s", ' '.join(
                    document.text.splitlines())) if len(p) > 10
            ]
            i = 0
            r = ''
            list_passages = []
            for p in list_passages_tmp:
                if i > 5:
                    i = 0
                    list_passages.append(r)
                    r = ''
                else:
                    r += ' ' + p
                    i += 1
            if i <= 5 and i > 0:
                list_passages.append(r)
        return list_passages

    def make_concepts(self, text):
        assert isinstance(text, str)
        is_noun = lambda pos: pos[:2] == 'NN'
        self.engine.preprocessor.pos_tag = True

        return [
            word for (word, pos) in self.engine.preprocessor.tokenize(text)
            if is_noun(pos) and len(word) > 2
        ]

    def find_sort_concepts(self, passages, query):
        millis = int(round(time.time() * 1000))
        source = ListSource(list_docs=passages,
                            list_query=[],
                            language=self.language,
                            info=millis)
        source.preprocessor.use_stop_words = True
        source.preprocessor.save = False
        source.preprocessor.reduce = True
        source.preprocessor.pos_tag = False
        source.preprocessor.expand_terms = True
        index = source.preprocessor.get_representation_docs(force=True,
                                                            do_idf=False,
                                                            type_tf=3,
                                                            norm=None)
        query_processor = QueryProcessor(expanded=False,
                                         reduce=True,
                                         preprocessor=source.preprocessor)
        search_model = VectorSearch()
        search_model.set_index(index)
        self.engine = Engine(source,
                             query_processor,
                             search_model,
                             free_search=True)
        query_result = self.engine.search(query)
        docs_list_retrieval = [
            source.read_doc(d)
            for d in query_result.docs_retrieval[:self.n_passages]
        ]
        concepts = []
        for d in docs_list_retrieval:
            concepts.extend(self.make_concepts(d.text))

        return list(set(c for c in concepts))

    def func_correlation(self, concept, ki):
        try:
            r = self.model[self.engine.index.get_feature_id(concept),
                           self.engine.index.get_feature_id(ki)]
            #print(r)
            if r < 0:
                #print("Erro palavra negativo")
                return 0.0
            else:
                return r
        except:
            #print("Erro palavra nao index correlacao")
            return 0

    def IDF(self, term, N, Nc):
        return min(1, np.log10(N / Nc) / 5)

    def exist_vocab(self, k):
        return k in self.engine.index.index.keys()

    def co_degree(self, c, ki, N, Nc):
        return np.log10(self.func_correlation(c, ki) + 1) * self.IDF(
            c, N, Nc) / np.log10(self.n_top_ranked)

    def similarity(self, query, concept):
        assert isinstance(query, Query)

        N = len(self.preprocessor.representation.documents)
        try:
            Nc = len(self.preprocessor.representation.index[concept])
        except:
            #print("Erro palavra nao index")
            return 0.0

        simqc = []
        for ki in query.query_vector:
            try:
                Nk = len(self.preprocessor.representation.index[ki])
            except:
                #print("Erro palavra nao index local")
                continue
            tmp = (self.factor + self.co_degree(concept, ki, N, Nc))**self.IDF(
                ki, N, Nk)
            simqc.append(tmp)
        #print('%s: %s' % (concept,simqc))
        return np.prod(simqc)

    def representation(self):
        self.model = self.engine.index.comatrix

    def expand_query(self, query):
        if isinstance(query, Query) and len(query.query_vector) > 0:
            # Search top documents
            #if not self.top_docs:
            self.top_docs = search_basic(self.preprocessor.source,
                                         query.text,
                                         total_result=self.n_top_ranked)
            documents = self.top_docs

            # Find passages
            self.passages = []
            if documents:
                for doc in documents:
                    self.passages.extend(
                        self.find_passage(self.window_size, doc))

            # Find concepts
            top_concepts = self.find_sort_concepts(self.passages, query.text)

            self.representation()

            #Sort top concepts
            m_scores = {}
            for i, cpt in enumerate(top_concepts):
                m_scores[cpt] = self.similarity(query, cpt)

            #print(m_scores)
            for w in query.query_vector:
                if w in m_scores.keys():
                    del m_scores[w]

            best_m = sorted(m_scores, key=m_scores.get,
                            reverse=True)[:self.m_concept]
            query.query_score = [2.0 for w in query.query_vector]

            print(query.query_vector)
            for i, c in enumerate(best_m):
                query.query_vector.append(c)
                query.query_score.append(1 - (0.9 * i / self.m_concept))

            print(query.query_vector)
            return query
        else:
            raise Exception('query is not instance of Query')
Ejemplo n.º 9
0
def main():
    window = Engine(font="assets/font/font.ttf", FPS=16)
    window.loading("img")
    game = Factory(window)
    
    while True:
        window.play_music()
        window.clear()
        window.stop()

        if window.MENU == "LOADING":
            game.render_loading()

        elif window.MENU == "HOME":
            game.render_home()

        elif window.MENU == "HELP":
            game.render_help()

        elif window.MENU == "OPTIONS":
            game.render_options()

        elif window.MENU == "SAVE_SLOT":
            game.render_save_slot()

        elif window.MENU == "HOF":
            game.render_hall_of_fame()

        elif window.MENU == "INSTRUCTIONS":
            game.render_instructions()

        window.update()

    pygame.quit()
    exit()
Ejemplo n.º 10
0
    def get_context_data(self, **kwargs):

        context = super(SearchView, self).get_context_data(**kwargs)
        source_select = self.request.GET['source_select'] if 'source_select' in self.request.GET.keys() and \
                                                             self.request.GET['source_select'] else None
        query_processor_select = self.request.GET['query_processor'] if 'query_processor' in self.request.GET.keys() and \
                                                                        self.request.GET['query_processor'] else None
        search_model_select = self.request.GET['search_model'] if 'search_model' in self.request.GET.keys() and \
                                                                  self.request.GET['search_model'] else None
        query_text = self.request.GET['q'] if 'q' in self.request.GET.keys(
        ) and self.request.GET['q'] else None
        qid = int(self.request.GET['qid']) if 'qid' in self.request.GET.keys(
        ) and self.request.GET['qid'] else None
        drid = int(
            self.request.GET['drid']) if 'drid' in self.request.GET.keys(
            ) and self.request.GET['drid'] else None

        page = int(
            self.request.GET['page']) if 'page' in self.request.GET.keys(
            ) and self.request.GET['page'] else 1
        free_search = True if 'free_search' in self.request.GET.keys(
        ) and self.request.GET['free_search'] == 'on' else False
        metrics_search = True if 'metrics_search' in self.request.GET.keys(
        ) and self.request.GET['metrics_search'] == 'on' else False

        try:
            if (source_select and query_processor_select
                    and search_model_select and query_text):

                source_type = SourceType.objects.filter(slug=source_select,
                                                        enable=True).first()
                if (source_type.slug == 'artigos'):
                    source = get_class(source_type.instance)(
                        path=os.path.join(BASE_DIR, source_type.path))
                else:
                    source = SOURCES_LIST[source_select]

                #if not 'source_v' in self.request.session.keys():
                #self.request.session['source_v'] = source
                #else:
                #source = self.request.session['source_v']

                q_pro_type = QueryProcessorType.objects.filter(
                    slug=query_processor_select).first()
                query_processor = get_class(
                    q_pro_type.instance)(preprocessor=source.preprocessor)

                search_type = SearchType.objects.filter(
                    slug=search_model_select).first()
                search_model = get_class(search_type.instance)()

                engine = Engine(source,
                                query_processor,
                                search_model,
                                free_search=free_search)
                related_docs = None
                metrics = None

                if drid != None:
                    related_docs = [drid]

                now = datetime.now()
                query_result = engine.search(query_text,
                                             qid=qid,
                                             related_docs=related_docs)
                if metrics_search and not free_search:
                    metrics = engine.calculate_metrics(
                        query_result, self.request.session.session_key)

                later = datetime.now()

                diff = later - now
                diff_in_seconds = diff.seconds + diff.microseconds / 1E6

                docs_list = query_result.docs_retrieval
                docs_list_relevant = query_result.docs_relevant

                context['total_docs'] = len(docs_list)
                paginator = Paginator(docs_list, 10)
                paginator2 = Paginator(docs_list_relevant, 10)

                try:
                    docs = paginator.page(page)
                except PageNotAnInteger:
                    page = 1
                    docs = paginator.page(page)
                except EmptyPage:
                    page = 1
                    docs = paginator.page(paginator.num_pages)

                try:
                    docs_rel = paginator2.page(page)
                except PageNotAnInteger:
                    docs_rel = paginator2.page(1)
                except EmptyPage:
                    docs_rel = []

                if docs:
                    ids = [engine.index.get_doc_item(d).id for d in docs]
                    docs.object_list = DocumentData.objects.filter(
                        idd__in=ids, source=source_type)\
                        # .extra(

                    # select={'manual': 'FIELD(idd,%s)' % ','.join(map(str, ids))},
                    # order_by=['manual'])
                if docs_rel:
                    ids = [d for d in docs_rel]
                    docs_rel.object_list = DocumentData.objects.filter(
                        idd__in=ids, source=source_type)
                    # .extra(
                    # select={'manual': 'FIELD(idd,%s)' % ','.join(map(str, ids))},
                    # order_by=['manual'])

                context['documents'] = docs
                context['documents_relevant'] = docs_rel
                context['result_config'] = str(engine)
                context['query_text'] = query_text
                context['drid'] = drid
                context['qid'] = qid
                context['document_related'] = DocumentData.objects.filter(
                    idd=drid, source=source_type).first()

                context['query_result'] = str(engine.query.dic_vector())
                context['source_result'] = source_type.name
                context['expansion_result'] = q_pro_type.name
                context['model_result'] = engine.search_model.info
                context['context_result'] = None

                context['page'] = page
                context['total_time'] = ("%.2f") % diff_in_seconds
                context['metrics'] = metrics

                query_request = QueryRequest()
                query_request.text = query_text
                query_request.query_processor = q_pro_type
                query_request.search = search_type
                query_request.time_request = diff_in_seconds
                query_request.free_search = free_search
                query_request.source = SourceType.objects.filter(
                    slug=source_select, enable=True).first()
                query_request.page = page
                query_request.save()

                # messages.add_message(self.request, INFO, )
            else:
                # Favor preencher as informações
                messages.add_message(self.request, ERROR,
                                     _('Please fill out the information'))
        except (Exception) as e:
            traceback.print_exc(file=sys.stdout)
            messages.add_message(self.request, ERROR, str(e))

        # Config

        self.request.session['source_select'] = source_select
        self.request.session['query_processor_select'] = query_processor_select
        self.request.session['search_model_select'] = search_model_select
        self.request.session['free_search'] = 'on' if free_search else ''
        self.request.session['metrics_search'] = 'on' if metrics_search else ''

        session2context(context, self.request.session)
        return context
Ejemplo n.º 11
0
            for cfe in cf_expanded:
                for cfr in cf_reduce:
                    #GenericPreprocessor(source=fonte)
                    print('Representation Docs')
                    index = preprocess.get_representation_docs()
                    query_processor = cfe
                    print('Representation Querys')
                    querys = preprocess.get_representation_query()

                    params = {'mode': cfm}
                    search_model = get_class(cft)(
                        params=params)  #BM25Search(params=params)
                    search_model.set_index(index)
                    print('Setting Engine')
                    engine = Engine(source,
                                    query_processor,
                                    search_model,
                                    free_search=False)

                    fo_rel = open(path_relevant_file % engine.slug(), 'wt')
                    fo_ret = open(path_retrieval_file % engine.slug(), 'wt')
                    z = 0
                    for q in list(source.read_querys()):
                        print('Read query %s' % q.id)
                        z += 1

                        #profile.run('query_result = engine.search(q.text, qid=q.id);print()')
                        query_result = engine.search(q.text, qid=q.id)

                        #Problema TODO UID x ID
                        docs_list_retrieval = [
                            engine.index.get_doc_item(d).id