Ejemplo n.º 1
0
    def FitOnePixel(self,ra,dec,i,j) :
        """Run a evaluation of the pixel (i,j) corresponding to position (ra,dec)"""
        outXml = utils._dump_xml(self.config)
        folder = self.config['out']
        _,Fit = GenAnalysisObjects(self.config,xmlfile=outXml) #get the Fit object

        src = GetSrc(Fit,ra,dec) # get the Source object at postion ra dec

        if self.config['TSMap']['RemoveTarget'] : # remove the target is asked
            Fit.deleteSource(self.config['target']['name'])

        if self.config['TSMap']['Re-Fit']: # reoptimze before is asked
            Fit.fit(0,optimizer=self.config['fitting']['optimizer'])

        for par in xrange(Fit.logLike.getNumParams()): # freeze all the source parameters
            Fit[par].setFree(0)

        Fit.addSource(src)# add a spurious source
        # dump the *new* xml file
        Fit.writeXml(self.tsfolder+"/model_"+str(ra)+"_"+str(dec)+".xml") 

        # a new Fit object with the new xml file is needed.
        # just changing the position of the spurious source does not work 
        _,TSFit = GenAnalysisObjects(self.config,xmlfile=self.tsfolder+"/model_"+str(ra)+"_"+str(dec)+".xml") #get the Fit object

        TSFit.fit(0,optimizer=self.config['fitting']['optimizer'])

        # save the result
        fsave = open(self._PixelFile(i,j),'w')
        fsave.write(str(ra)+"\t"+str(dec)+"\t"+
                    str(TSFit.Ts("Spurious"))+"\t"+
                    str(TSFit.logLike.value()))
        fsave.close()
Ejemplo n.º 2
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try :
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except :
            self.warning("No results file found; please run enrico_sed first.")
            return
        
        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                self._errorReading("Fail reading the config file ",i)
                continue

#            LogL1.append(ResultDic.get("log_like"))
            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _,Fit = GenAnalysisObjects(CurConfig,verbose=0)#be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index']  = -2.
            parameters['alpha']  = +2.
            parameters['Index1'] = -2.
            parameters['beta']   = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 30000. # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm","Prefactor","Integral"]:
                try:
                    utils.FreezeParams(Fit,self.srcname,key, utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue
            
            LogL0.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            del Fit #Clean memory


        plt.figure()
        plt.xlabel("Time")
        plt.ylabel("Log(Like) Variability")
        plt.errorbar(Time,LogL0,fmt='o',color='black',ls='None')

        plt.savefig(LcOutPath+"_VarIndex.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        self.info("Variability index calculation") 
        print "\t TSvar = ",2*(sum(LogL1)-sum(LogL0))
        print "\t NDF = ",len(LogL0)-1
        print "\t Chi2 prob = ",1 - chi2.cdf(2*(sum(LogL1)-sum(LogL0)),len(LogL0)-1)
        print 
Ejemplo n.º 3
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'
        #        ValueDC = self.GetDCValue()
        ResultDicDC = utils.ReadResult(self.config)
        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("fail reading the config file ", i)
                #                print "WARNING : fail reading the config file : ",CurConfig
                #                print "Job Number : ",i
                #                print "Please have a look at this job log file"
                continue


#            LogL1.append(ResultDic.get("log_like"))
#Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _, Fit = GenAnalysisObjects(CurConfig, verbose=0)  #be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            self.info("Spectral index frozen to a value of 2")
            utils.FreezeParams(Fit, self.srcname, 'Index', -2)
            LogL1.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            Model_type = Fit.model.srcs[self.srcname].spectrum().genericName()
            if (Model_type == 'PowerLaw'):
                utils.FreezeParams(Fit, self.srcname, 'Prefactor',
                                   utils.fluxNorm(ResultDicDC['Prefactor']))
            if (Model_type == 'PowerLaw2'):
                utils.FreezeParams(Fit, self.srcname, 'Integral',
                                   utils.fluxNorm(ResultDicDC['Integral']))
            LogL0.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            del Fit  #Clean memory

        Can = _GetCanvas()
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.Draw("ALP*")
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.SetMarkerColor(2)
        TgrDC.Draw("PL*")
        #Save the canvas in the LightCurve subfolder
        Can.Print(LcOutPath + '_VarIndex.eps')
        Can.Print(LcOutPath + '_VarIndex.C')
        self.info("Variability index calculation")
        print "\t TSvar = ", 2 * (sum(LogL1) - sum(LogL0))
        print "\t NDF = ", len(LogL0) - 1
        print "\t Chi2 prob = ", ROOT.TMath.Prob(2 * (sum(LogL1) - sum(LogL0)),
                                                 len(LogL0) - 1)
        print
Ejemplo n.º 4
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FGL catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try :
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except :
            self.warning("No results file found; please run enrico_sed first.")
            return

        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try :
                ResultDic = utils.ReadResult(CurConfig)
            except :
                self._errorReading("Fail reading the config file ",i)
                continue

#            LogL1.append(ResultDic.get("log_like"))
            #Update the time and time error array
            Time.append((ResultDic.get("tmax")+ResultDic.get("tmin"))/2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _,Fit = GenAnalysisObjects(CurConfig,verbose=0)#be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index']  = -2.
            parameters['alpha']  = +2.
            parameters['Index1'] = -2.
            parameters['beta']   = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 100000. # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm","Prefactor","Integral"]:
                try:
                    utils.FreezeParams(Fit,self.srcname,key, utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue

            LogL0.append(-Fit.fit(0,optimizer=CurConfig['fitting']['optimizer']))

            del Fit #Clean memory


        plt.figure()
        plt.xlabel("Time")
        plt.ylabel("Log(Like) Variability")
        plt.errorbar(Time,LogL0,fmt='o',color='black',ls='None')
        plt.xlim(xmin=max(plt.xlim()[0],1.02*min(Time)-0.02*max(Time)),
                 xmax=min(plt.xlim()[1],1.02*max(Time)-0.02*min(Time)))

        # Move the offset to the axis label
        ax = plt.gca()
        ax.get_yaxis().get_major_formatter().set_useOffset(False)
        offset_factor = int(np.mean(np.log10(np.abs(ax.get_ylim()))))
        if (offset_factor != 0):
            ax.set_yticklabels([float(round(k,5)) \
              for k in ax.get_yticks()*10**(-offset_factor)])
            ax.yaxis.set_label_text(ax.yaxis.get_label_text() +\
               r" [${\times 10^{%d}}$]" %offset_factor)

        # Secondary axis with MJD
        mjdaxis = ax.twiny()
        mjdaxis.set_xlim([utils.met_to_MJD(k) for k in ax.get_xlim()])
        mjdaxis.set_xlabel(r"Time (MJD)")
        mjdaxis.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter(useOffset=False))
        plt.setp( mjdaxis.xaxis.get_majorticklabels(), rotation=15 )
        plt.tight_layout()

        plt.savefig(LcOutPath+"_VarIndex.png", dpi=150, facecolor='w', edgecolor='w',
                orientation='portrait', papertype=None, format=None,
                transparent=False, bbox_inches=None, pad_inches=0.1,
                frameon=None)

        self.info("Variability index calculation")
        print "\t TSvar = ",2*(sum(LogL1)-sum(LogL0))
        print "\t NDF = ",len(LogL0)-1
        print "\t Chi2 prob = ",1 - chi2.cdf(2*(sum(LogL1)-sum(LogL0)),len(LogL0)-1)
        print
Ejemplo n.º 5
0
    def VariabilityIndex(self):
        """Compute the variability index as in the 2FLG catalogue. (see Nolan et al, 2012)"""
        LcOutPath = self.LCfolder + self.config['target']['name']

        utils._log('Computing Variability index ')

        self.config['Spectrum']['FitsGeneration'] = 'no'

        try:
            ResultDicDC = utils.ReadResult(self.generalconfig)
        except:
            self.warning("No results file found; please run enrico_sed first.")
            return

        LogL1 = []
        LogL0 = []
        Time = []
        for i in xrange(self.Nbin):
            CurConfig = get_config(self.configfile[i])
            #Read the result. If it fails, it means that the bins has not bin computed. A warning message is printed
            try:
                ResultDic = utils.ReadResult(CurConfig)
            except:
                self._errorReading("fail reading the config file ", i)
                #                print "WARNING : fail reading the config file : ",CurConfig
                #                print "Job Number : ",i
                #                print "Please have a look at this job log file"
                continue


#            LogL1.append(ResultDic.get("log_like"))
#Update the time and time error array
            Time.append((ResultDic.get("tmax") + ResultDic.get("tmin")) / 2.)

            ##############################################################
            #   Compute the loglike value using the DC flux or prefactor
            ##############################################################
            # Create one obs instance
            CurConfig['Spectrum']['FitsGeneration'] = 'no'
            _, Fit = GenAnalysisObjects(CurConfig, verbose=0)  #be quiet
            Fit.ftol = float(self.config['fitting']['ftol'])

            #Spectral index management!
            parameters = dict()
            parameters['Index'] = -2.
            parameters['alpha'] = +2.
            parameters['Index1'] = -2.
            parameters['beta'] = 0
            parameters['Index2'] = 2.
            parameters['Cutoff'] = 30000.  # set the cutoff to be high

            for key in parameters.keys():
                try:
                    utils.FreezeParams(Fit, self.srcname, key, parameters[key])
                except:
                    continue

            LogL1.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            for key in ["norm", "Prefactor", "Integral"]:
                try:
                    utils.FreezeParams(Fit, self.srcname, key,
                                       utils.fluxNorm(ResultsDicDC[key]))
                except:
                    continue

            LogL0.append(
                -Fit.fit(0, optimizer=CurConfig['fitting']['optimizer']))

            del Fit  #Clean memory

        Can = _GetCanvas()
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.Draw("ALP*")
        TgrDC = ROOT.TGraph(len(Time), np.array(Time), np.array(LogL0))
        TgrDC.SetMarkerColor(2)
        TgrDC.Draw("PL*")
        #Save the canvas in the LightCurve subfolder
        Can.Print(LcOutPath + '_VarIndex.eps')
        Can.Print(LcOutPath + '_VarIndex.C')
        self.info("Variability index calculation")
        print "\t TSvar = ", 2 * (sum(LogL1) - sum(LogL0))
        print "\t NDF = ", len(LogL0) - 1
        print "\t Chi2 prob = ", ROOT.TMath.Prob(2 * (sum(LogL1) - sum(LogL0)),
                                                 len(LogL0) - 1)
        print