Ejemplo n.º 1
0
        return 1

    length = max - min
    num_repeat = (weight - min) * (range_right - 1) / length + 1
    return num_repeat


trainset = torchvision.datasets.MNIST('./data',
                                      train=True,
                                      download=True,
                                      transform=transforms.ToTensor())
trainloader = torch.utils.data.DataLoader(dataset=trainset, shuffle=False)

CLASSIFIER_NUM = 9
classifier = AdaBoostClassifier(mlpClassifier)
classifier.train(trainloader, classifier_num=CLASSIFIER_NUM)

test_dataset = torchvision.datasets.MNIST(root='./data',
                                          train=False,
                                          download=True,
                                          transform=transforms.ToTensor())
test_dataloader = torch.utils.data.DataLoader(test_dataset, shuffle=False)

# Test the AdaBoostClassifier
correct = 0
for batch_index, (data, target) in enumerate(test_dataloader):
    # Copy data to GPU if needed
    data = data.to(device)
    target = target.to(device)

    category = classifier.predict(data)
Ejemplo n.º 2
0
])
trainset = torchvision.datasets.CIFAR10(root='./data',
                                        train=True,
                                        download=True,
                                        transform=transform_train)
train_dataloader = torch.utils.data.DataLoader(trainset,
                                               batch_size=BATCH_SIZE,
                                               shuffle=False)
validation_dataloader = torch.utils.data.DataLoader(trainset,
                                                    batch_size=1,
                                                    shuffle=False)

# Define and train the AdaBoostClassifier
classifier = AdaBoostClassifier(ResNetBibdGcClassifier)
classifier.train(train_dataloader,
                 validation_dataloader,
                 classifier_num=CLASSIFIER_NUM)

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
test_dataset = torchvision.datasets.CIFAR10(root='./data',
                                            train=False,
                                            download=True,
                                            transform=transform_test)
test_dataloader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=1,
                                              shuffle=False)

# Test the AdaBoostClassifier