Ejemplo n.º 1
0
        pkl_psrs = pickle.load(f)

    with open(args.noisepath, 'r') as fin:
        noise = json.load(fin)

    # Set Tspan for RN

    Tspan_PTA = model_utils.get_tspan(pkl_psrs)
    # common red noise block
    fmin = 10.0
    modes, wgts = model_utils.linBinning(Tspan_PTA, 1, 1.0 / fmin / Tspan_PTA,
                                         14, 5)
    # wgts = wgts**2.0

    # timing model
    s = gp_signals.MarginalizingTimingModel()

    s += blocks.white_noise_block(vary=False, inc_ecorr=True, select='backend')

    s += blocks.red_noise_block(
        psd='powerlaw',
        prior='log-uniform',
        Tspan=Tspan_PTA,
        modes=modes,
        wgts=wgts,
    )

    gamma_gw = parameter.Uniform(0, 7)('gw_gamma')
    log10_Agw = parameter.Uniform(-18, -11)('gw_log10_A')
    cpl = gpp.powerlaw_genmodes(log10_A=log10_Agw, gamma=gamma_gw, wgts=wgts)
    s += gp_signals.FourierBasisGP(cpl, modes=modes, name='gw_crn')
Ejemplo n.º 2
0
    def compute_like(self,
                     npsrs=1,
                     inc_corr=False,
                     inc_kernel=False,
                     cholesky_sparse=True,
                     marginalizing_tm=False):
        # get parameters from PAL2 style noise files
        params = get_noise_from_pal2(datadir + "/B1855+09_noise.txt")
        params2 = get_noise_from_pal2(datadir + "/J1909-3744_noise.txt")
        params.update(params2)

        psrs = self.psrs if npsrs == 2 else [self.psrs[0]]

        if inc_corr:
            params.update({"GW_gamma": 4.33, "GW_log10_A": -15.0})

        # find the maximum time span to set GW frequency sampling
        tmin = [p.toas.min() for p in psrs]
        tmax = [p.toas.max() for p in psrs]
        Tspan = np.max(tmax) - np.min(tmin)

        # setup basic model
        efac = parameter.Constant()
        equad = parameter.Constant()
        ecorr = parameter.Constant()
        log10_A = parameter.Constant()
        gamma = parameter.Constant()

        selection = Selection(selections.by_backend)

        ms = white_signals.MeasurementNoise(efac=efac,
                                            log10_t2equad=equad,
                                            selection=selection)
        ec = white_signals.EcorrKernelNoise(log10_ecorr=ecorr,
                                            selection=selection)

        pl = utils.powerlaw(log10_A=log10_A, gamma=gamma)
        rn = gp_signals.FourierBasisGP(pl)

        orf = utils.hd_orf()
        crn = gp_signals.FourierBasisCommonGP(pl,
                                              orf,
                                              components=20,
                                              name="GW",
                                              Tspan=Tspan)

        if marginalizing_tm:
            tm = gp_signals.MarginalizingTimingModel()
        else:
            tm = gp_signals.TimingModel()

        log10_sigma = parameter.Uniform(-10, -5)
        log10_lam = parameter.Uniform(np.log10(86400), np.log10(1500 * 86400))
        basis = create_quant_matrix(dt=7 * 86400)
        prior = se_kernel(log10_sigma=log10_sigma, log10_lam=log10_lam)
        se = gp_signals.BasisGP(prior, basis, name="se")

        # set up kernel stuff
        if isinstance(inc_kernel, bool):
            inc_kernel = [inc_kernel] * npsrs

        if inc_corr:
            s = tm + ms + ec + rn + crn
        else:
            s = tm + ms + ec + rn

        models = []
        for ik, psr in zip(inc_kernel, psrs):
            snew = s + se if ik else s
            models.append(snew(psr))

        if cholesky_sparse:
            like = signal_base.LogLikelihood
        else:
            like = signal_base.LogLikelihoodDenseCholesky

        pta = signal_base.PTA(models, lnlikelihood=like)

        # set parameters
        pta.set_default_params(params)

        # SE kernel parameters
        log10_sigmas, log10_lams = [-7.0, -6.5], [7.0, 6.5]
        params.update({
            "B1855+09_se_log10_lam": log10_lams[0],
            "B1855+09_se_log10_sigma": log10_sigmas[0],
            "J1909-3744_se_log10_lam": log10_lams[1],
            "J1909-3744_se_log10_sigma": log10_sigmas[1],
        })

        # get parameters
        efacs, equads, ecorrs, log10_A, gamma = [], [], [], [], []
        lsig, llam = [], []
        for pname in [p.name for p in psrs]:
            efacs.append([
                params[key] for key in sorted(params.keys())
                if "efac" in key and pname in key
            ])
            equads.append([
                params[key] for key in sorted(params.keys())
                if "equad" in key and pname in key
            ])
            ecorrs.append([
                params[key] for key in sorted(params.keys())
                if "ecorr" in key and pname in key
            ])
            log10_A.append(params["{}_red_noise_log10_A".format(pname)])
            gamma.append(params["{}_red_noise_gamma".format(pname)])
            lsig.append(params["{}_se_log10_sigma".format(pname)])
            llam.append(params["{}_se_log10_lam".format(pname)])
        GW_gamma = 4.33
        GW_log10_A = -15.0

        # correct value
        tflags = [sorted(list(np.unique(p.backend_flags))) for p in psrs]
        cfs, logdets, phis, Ts = [], [], [], []
        for ii, (ik, psr, flags) in enumerate(zip(inc_kernel, psrs, tflags)):
            nvec0 = np.zeros_like(psr.toas)
            for ct, flag in enumerate(flags):
                ind = psr.backend_flags == flag
                nvec0[ind] = efacs[ii][ct]**2 * (
                    psr.toaerrs[ind]**2 +
                    10**(2 * equads[ii][ct]) * np.ones(np.sum(ind)))

            # get the basis
            bflags = psr.backend_flags
            Umats = []
            for flag in np.unique(bflags):
                mask = bflags == flag
                Umats.append(
                    utils.create_quantization_matrix(psr.toas[mask])[0])
            nepoch = sum(U.shape[1] for U in Umats)
            U = np.zeros((len(psr.toas), nepoch))
            jvec = np.zeros(nepoch)
            netot = 0
            for ct, flag in enumerate(np.unique(bflags)):
                mask = bflags == flag
                nn = Umats[ct].shape[1]
                U[mask, netot:nn + netot] = Umats[ct]
                jvec[netot:nn + netot] = 10**(2 * ecorrs[ii][ct])
                netot += nn

            # get covariance matrix
            cov = np.diag(nvec0) + np.dot(U * jvec[None, :], U.T)
            cf = sl.cho_factor(cov)
            logdet = np.sum(2 * np.log(np.diag(cf[0])))
            cfs.append(cf)
            logdets.append(logdet)

            F, f2 = utils.createfourierdesignmatrix_red(psr.toas,
                                                        nmodes=20,
                                                        Tspan=Tspan)
            Mmat = psr.Mmat.copy()
            norm = np.sqrt(np.sum(Mmat**2, axis=0))
            Mmat /= norm
            U2, avetoas = create_quant_matrix(psr.toas, dt=7 * 86400)
            if ik:
                T = np.hstack((F, Mmat, U2))
            else:
                T = np.hstack((F, Mmat))
            Ts.append(T)
            phi = utils.powerlaw(f2, log10_A=log10_A[ii], gamma=gamma[ii])
            if inc_corr:
                phigw = utils.powerlaw(f2, log10_A=GW_log10_A, gamma=GW_gamma)
            else:
                phigw = np.zeros(40)
            K = se_kernel(avetoas,
                          log10_sigma=log10_sigmas[ii],
                          log10_lam=log10_lams[ii])
            k = np.diag(
                np.concatenate((phi + phigw, np.ones(Mmat.shape[1]) * 1e40)))
            if ik:
                k = sl.block_diag(k, K)
            phis.append(k)

        # manually compute loglike
        loglike = 0
        TNrs, TNTs = [], []
        for ct, psr in enumerate(psrs):
            TNrs.append(np.dot(Ts[ct].T, sl.cho_solve(cfs[ct], psr.residuals)))
            TNTs.append(np.dot(Ts[ct].T, sl.cho_solve(cfs[ct], Ts[ct])))
            loglike += -0.5 * (
                np.dot(psr.residuals, sl.cho_solve(cfs[ct], psr.residuals)) +
                logdets[ct])

        TNr = np.concatenate(TNrs)
        phi = sl.block_diag(*phis)

        if inc_corr:
            hd = utils.hd_orf(psrs[0].pos, psrs[1].pos)
            phi[len(phis[0]):len(phis[0]) + 40, :40] = np.diag(phigw * hd)
            phi[:40, len(phis[0]):len(phis[0]) + 40] = np.diag(phigw * hd)

        cf = sl.cho_factor(phi)
        phiinv = sl.cho_solve(cf, np.eye(phi.shape[0]))
        logdetphi = np.sum(2 * np.log(np.diag(cf[0])))
        Sigma = sl.block_diag(*TNTs) + phiinv

        cf = sl.cho_factor(Sigma)
        expval = sl.cho_solve(cf, TNr)
        logdetsigma = np.sum(2 * np.log(np.diag(cf[0])))

        loglike -= 0.5 * (logdetphi + logdetsigma)
        loglike += 0.5 * np.dot(TNr, expval)

        method = ["partition", "sparse", "cliques"]
        for mth in method:
            eloglike = pta.get_lnlikelihood(params, phiinv_method=mth)
            msg = "Incorrect like for npsr={}, phiinv={}, csparse={}, mtm={}".format(
                npsrs, mth, cholesky_sparse, marginalizing_tm)
            assert np.allclose(eloglike, loglike), msg