Ejemplo n.º 1
0
    def get_dq(self):
        # compute dx of object
        dx_xyzquat = self.get_dx()

        # get euler angles from quaternion
        dx_rpy = T.quat_to_euler(dx_xyzquat[3:7])

        # get (6x1) dx
        dx = np.hstack([dx_xyzquat[:3], dx_rpy])

        # scale down dx
        dx[:3] = self.move_speed * dx[:3]
        dx[3:] = self.rotate_speed * dx[3:]

        # compute (6xn) Jacobian with end-effector as object
        J = self.compute_object_jacobian()

        # compute (nx6) pseudoinverse of Jacobian
        Jinv = np.linalg.pinv(J)

        # compute change in configuration
        dq = self.matrixMultiply(Jinv, dx)  # (nx1) = (nx6) * (6x1)

        # compute ik solution by from current joint states and dq
        # note this ik solution does not accurately reflect arm that should stay stationary
        ik_solution = self.robot_jpos_getter() + dq

        # compute arm targets for stationary arms
        target_left_pos = self.curr_left_pos + np.zeros_like(dx[:3])
        target_left_quat_diff = T.quat_multiply(
            T.quat_inverse(self.curr_left_quat), self.curr_left_quat)
        target_left_quat = T.quat_multiply(self.curr_left_quat,
                                           target_left_quat_diff)
        target_right_pos = self.curr_right_pos + np.zeros_like(dx[:3])
        target_right_quat_diff = T.quat_multiply(
            T.quat_inverse(self.curr_right_quat), self.curr_right_quat)
        target_right_quat = T.quat_multiply(self.curr_right_quat,
                                            target_right_quat_diff)

        # use inverse kinematics function to compute ik solution
        ik_solution_stationary = self.inverse_kinematics(
            target_right_pos,
            target_right_quat,
            target_left_pos,
            target_left_quat,
            rest_poses=self.robot_jpos_getter())

        # merge two ik solutions; ik_solution for arm that moves, ik_solution_stationary for arm that does not
        if self.control_arm == "left":
            control_command = np.hstack(
                [ik_solution_stationary[:7], ik_solution[7:]])
        else:  # self.control_arm == "right":
            control_command = np.hstack(
                [ik_solution[:7], ik_solution_stationary[7:]])

        return control_command
Ejemplo n.º 2
0
    def get_target_gripper_pose(self, target_object_pos, target_object_quat):
        # compute difference between current end-effector and object poses
        diff_pos = self.curr_pos - self.object_curr_pos  # points from object to end-effector
        diff_quat = T.quat_multiply(T.quat_inverse(self.curr_quat),
                                    self.object_curr_quat)
        diff = np.hstack([diff_pos, diff_quat])

        # compute target for end-effector based on target for object and expected difference between poses
        target_ee_pos = target_object_pos + diff[:3]
        target_ee_quat = T.quat_multiply(target_object_quat, diff[3:7])

        return (target_ee_pos, target_ee_quat)
Ejemplo n.º 3
0
    def potential(self):
        # check if goal exists
        if self.goal_quat is None:
            return 0
        # compute difference between current and goal pose
        diff_pos = self.curr_pos - self.curr_pos  # no difference
        diff_quat = T.quat_multiply(T.quat_inverse(self.curr_quat),
                                    self.goal_quat)
        diff = np.hstack([diff_pos, diff_quat])

        # compute distance to goal
        dist_pos = np.linalg.norm(diff[:3])  # no difference
        dist_quat = Quaternion.distance(Quaternion(self.curr_quat),
                                        Quaternion(self.goal_quat))
        dist_quat = min(dist_quat, math.pi - dist_quat)
        dist = dist_pos + dist_quat

        # compute potential
        pot = 0.5 * dist * dist
        if self.verbose or ((not self.suppress_output) and
                            ((self.num_iters % self.num_iters_print) == 0)):
            print("BaxterRotationController: potential %f" % pot)
        if self.verbose:
            print(
                "BaxterRotationController: position distance %f, rotation distance %f"
                % (dist_pos, dist_quat))
        return min(pot, self.max_potential)
Ejemplo n.º 4
0
	def gradient(self):
		# compute difference between current and goal pose
		diff_pos = self.curr_pos - self.goal_pos
		diff_quat = T.quat_multiply(T.quat_inverse(self.curr_quat), self.curr_quat) # no difference
		diff = np.hstack([diff_pos, diff_quat])

		# compute gradient
		grad = diff
		return grad
Ejemplo n.º 5
0
	def get_dq(self):
		# compute dx
		dx = self.get_dx()

		# compute targets
		if self.control_arm == "left":
			# target for left arm is to reach goal pose
			target_left_pos = self.curr_pos + (self.move_speed * dx[:3]) # scale down position
			target_left_quat = T.quat_multiply(self.curr_quat, dx[3:7]) # scale down rotation not necessary, since no rotation command
			# target for right arm is to stay in place
			target_right_pos = self.curr_right_pos + np.zeros_like(dx[:3])
			target_right_quat_diff = T.quat_multiply(T.quat_inverse(self.curr_right_quat), self.curr_right_quat)
			target_right_quat = T.quat_multiply(self.curr_right_quat, target_right_quat_diff)
		else: # self.control_arm == "right"
			# target for left arm is to stay in place
			target_left_pos = self.curr_left_pos + np.zeros_like(dx[:3])
			target_left_quat_diff = T.quat_multiply(T.quat_inverse(self.curr_left_quat), self.curr_left_quat)
			target_left_quat = T.quat_multiply(self.curr_left_quat, target_left_quat_diff)
			# target for right arm is to reach goal pose
			target_right_pos = self.curr_pos + (self.move_speed * dx[:3]) # scale down position
			target_right_quat = T.quat_multiply(self.curr_quat, dx[3:7]) # scale down rotation not necessary, since no rotation command

		# use inverse kinematics function to compute dq
		dq = self.inverse_kinematics(
			target_right_pos,
			target_right_quat,
			target_left_pos,
			target_left_quat,
			rest_poses=self.robot_jpos_getter()
		)

		return dq
Ejemplo n.º 6
0
    def potential(self):
        # compute difference between current and goal pose
        diff_pos = self.object_curr_pos - self.object_goal_pos
        diff_quat = T.quat_multiply(T.quat_inverse(self.object_curr_quat),
                                    self.object_goal_quat)
        diff = np.hstack([diff_pos, diff_quat])

        # compute distance to goal
        dist_pos = np.linalg.norm(diff[:3])
        dist_quat = Quaternion.distance(Quaternion(self.object_curr_quat),
                                        Quaternion(self.object_goal_quat))
        dist = dist_pos + dist_quat

        # compute potential
        pot = 0.5 * dist * dist
        print("BaxterObject6DPoseController: potential %f" % pot)
        if True:  #self.verbose: # TODO
            print(
                "BaxterObject6DPoseController: position distance %f, rotation distance %f"
                % (dist_pos, dist_quat))
        return min(pot, self.max_potential)
    def get_dq(self):
        # compute dx
        dx = self.get_dx()

        # compute targets
        if self.control_arm == "left":
            # target for left arm is to align with align pos
            target_left_pos = self.curr_pos + (self.move_speed * dx[:3]
                                               )  # dx[:3] is zero vector
            target_left_quat = T.quat_multiply(self.curr_quat, dx[3:7])
            target_left_quat = T.quat_slerp(
                self.curr_quat, target_left_quat,
                self.rotate_speed)  # scale down rotation
            # target for right arm is to stay in place
            target_right_pos = self.curr_right_pos + np.zeros_like(dx[:3])
            target_right_quat_diff = T.quat_multiply(
                T.quat_inverse(self.curr_right_quat), self.curr_right_quat)
            target_right_quat = T.quat_multiply(self.curr_right_quat,
                                                target_right_quat_diff)
        else:  # self.control_arm == "right"
            # target for left arm is to stay in place
            target_left_pos = self.curr_left_pos + np.zeros_like(dx[:3])
            target_left_quat_diff = T.quat_multiply(
                T.quat_inverse(self.curr_left_quat), self.curr_left_quat)
            target_left_quat = T.quat_multiply(self.curr_left_quat,
                                               target_left_quat_diff)
            # target for right arm is to align with align pos
            target_right_pos = self.curr_pos + (self.move_speed * dx[:3]
                                                )  # dx[:3] is zero vector
            target_right_quat = T.quat_multiply(self.curr_quat, dx[3:7])
            target_right_quat = T.quat_slerp(
                self.curr_quat, target_right_quat,
                self.rotate_speed)  # scale down rotation

        # use inverse kinematics function to compute dq
        dq = self.inverse_kinematics(target_right_pos,
                                     target_right_quat,
                                     target_left_pos,
                                     target_left_quat,
                                     rest_poses=self.robot_jpos_getter())

        return dq