########################################################################################

radio_frame = 20
seeds = np.arange(100).tolist()

seeds = [98]

start_time = time.time()

for seed in seeds:

    random.seed(seed)
    np.random.seed(seed)

    env = radio_environment(seed=seed)
    agent = QLearner(seed=seed)

    run_agent_fpa(env)
#    run_agent_tabular(env)
#    run_agent_deep(env)
#    run_agent_optimal(env)

########################################################################################

end_time = time.time()

filename = 'figures/timing_M={}.txt'.format(env.M_ULA)
file = open(filename, 'w')
duration = 1000. * (end_time - start_time)
print('Execution time: {:4f} ms.\n'.format(duration))
Ejemplo n.º 2
0
    ax.set_ylabel(r'$Q$')
    ax_sec.set_ylabel(r'$L$')
    plt.legend([plot1, plot2], [r'Average $Q$', r'Average loss'],
               bbox_to_anchor=(0.1, 0.0, 0.80, 1),
               bbox_transform=fig.transFigure,
               loc='lower center',
               ncol=3,
               mode="expand",
               borderaxespad=0.)

    plt.tight_layout()
    plt.savefig('output.pdf', format='pdf')
    plt.show()
    plt.close(fig)


seeds = np.arange(1).tolist()

for seed in seeds:

    env = radio_environment(random_state=seed)
    agent = QLearner(random_state=seed)
    start_time = time.time()
    run_agent_q(env)
    end_time = time.time()

    print('Simulation took {:.2f} minutes.'.format(
        (end_time - start_time) / 60.))

########################################################################################