def __init__(self, salchem=None): self.env = {} self.species = {} self.zspecies = [] self.nenv = 0 self.alchem = salchem if self.alchem is None: self.alchem = alchemy() self.globenv = None
def __init__(self, salchem=None): self.env={} self.species={} self.zspecies = [] self.atz = [] self.nenv=0 self.alchem=salchem if self.alchem is None: self.alchem=alchemy() self.globenv = None
def structk(strucA, strucB, alchem=alchemy(), peratom=False, mode="match", fout=None, peps=0.0, gamma=1.0, zeta=1.0, xspecies=False): # computes the SOAP similarity KERNEL between two structures by combining atom-centered kernels # possible kernel modes include: # average : scalar product between averaged kernels # match: best-match hungarian kernel # permanent: average over all permutations # average kernel. quick & easy! if mode == "fastavg": genvA = strucA.globenv genvB = strucB.globenv return envk(genvA, genvB, alchem)**zeta, 0 elif mode == "fastspecies": # for now, only implement standard Kronecker alchemy senvB = environ(strucB.nmax, strucB.lmax, strucB.alchem) kk = 0 for za in strucA.zspecies: if not za in strucB.zspecies: continue senvA = environ(strucA.nmax, strucA.lmax, strucA.alchem) for ia in xrange(strucA.getnz(za)): senvA.add(strucA.getenv(za, ia)) senvB = environ(strucB.nmax, strucB.lmax, strucB.alchem) for ib in xrange(strucB.getnz(za)): senvB.add(strucB.getenv(za, ib)) kk += envk(senvA, senvB, alchem)**zeta kk /= strucA.nenv * strucB.nenv return kk, 0 # for zb, nzb in nspeciesB: # for ib in xrange(nzb): # return envk(genvA, genvB, alchem), 0 nenv = 0 if peratom: # replicate structures to match structures of different peratomity # we do not check for compatibility at this stage, just assume that the # matching will be done somehow (otherwise it would be exceedingly hard to manage in case of non-standard alchemy) nspeciesA = [] nspeciesB = [] for z in strucA.zspecies: nspeciesA.append((z, strucA.getnz(z))) for z in strucB.zspecies: nspeciesB.append((z, strucB.getnz(z))) nenv = nenvA = strucA.nenv nenvB = strucB.nenv else: # top up missing atoms with isolated environments # first checks which atoms are present zspecies = sorted(list(set(strucB.zspecies + strucA.zspecies))) nspecies = [] for z in zspecies: nz = max(strucA.getnz(z), strucB.getnz(z)) nspecies.append((z, nz)) nenv += nz nenvA = nenvB = nenv nspeciesA = nspeciesB = nspecies np.set_printoptions(linewidth=500, precision=4) kk = np.zeros((nenvA, nenvB), float) ika = 0 ikb = 0 for za, nza in nspeciesA: for ia in xrange(nza): envA = strucA.getenv(za, ia) ikb = 0 for zb, nzb in nspeciesB: for ib in xrange(nzb): envB = strucB.getenv(zb, ib) if alchem.mu > 0 and (strucA.ismissing(za, ia) ^ strucB.ismissing(zb, ib)): # includes a penalty dependent on "mu", in a way that is consistent with the definition of kernel distance kk[ika, ikb] = exp(-alchem.mu) else: if za == zb or not xspecies: #uncomment to zero out kernels between different species kk[ika, ikb] = envk(envA, envB, alchem)**zeta else: kk[ika, ikb] = 0 ikb += 1 ika += 1 aidx = {} ika = 0 for za, nza in nspeciesA: aidx[za] = range(ika, ika + nza) ika += nza ikb = 0 bidx = {} for zb, nzb in nspeciesB: bidx[zb] = range(ikb, ikb + nzb) ikb += nzb if fout != None: # prints out similarity information for the environment pairs fout.write( "# atomic species in the molecules (possibly topped up with dummy isolated atoms): \n" ) for za, nza in nspeciesA: for ia in xrange(nza): fout.write(" %d " % (za)) fout.write("\n") for zb, nzb in nspeciesB: for ib in xrange(nzb): fout.write(" %d " % (zb)) fout.write("\n") fout.write("# environment kernel matrix: \n") for r in kk: for e in r: fout.write("%20.14e " % (e)) fout.write("\n") #fout.write("# environment kernel eigenvalues: \n") #ev = np.linalg.eigvals(kk) #for e in ev: # fout.write("(%8.4e,%8.4e) " % (e.real,e.imag) ) #fout.write("\n"); # Now we have the matrix of scalar products. # We can first find the optimal scalar product kernel # we must find the maximum "cost" if mode == "match": if peratom and nenvA != nenvB: nenv = lcm(nenvA, nenvB) hun = lcm_best_cost(1 - kk) else: hun = best_cost(1.0 - kk) cost = 1 - hun / nenv elif mode == "permanent": # there is no place to hide: cross-species environments are not necessarily zero if peps > 0: cost = mcperm(kk, peps) else: cost = xperm(kk) cost = cost / np.math.factorial(nenv) / nenv elif mode == "rematch": cost = rematch(kk, gamma, 1e-6) # hard-coded residual error for regularized gamma # print cost, kk.sum()/(nenv*nenv), envk(strucA.globenv, strucB.globenv, alchem) elif mode == "average": cost = kk.sum() / (nenvA * nenvB) # print 'elem: {}'.format(kk.sum()) # print 'elem norm: {}'.format(cost) # print 'avg norm: {}'.format((nenvA*nenvB)) else: raise ValueError("Unknown global fingerprint mode ", mode) return cost, kk
def structk(strucA, strucB, alchem=alchemy(), periodic=False, mode="match", fout=None, peps=0.0, gamma=1.0, zeta=1.0, xspecies=False): # computes the SOAP similarity KERNEL between two structures by combining atom-centered kernels # possible kernel modes include: # average : scalar product between averaged kernels # match: best-match hungarian kernel # permanent: average over all permutations # average kernel. quick & easy! if mode=="fastavg": genvA=strucA.globenv genvB=strucB.globenv return envk(genvA, genvB, alchem)**zeta, 0 elif mode=="fastspecies": # for now, only implement standard Kronecker alchemy senvB = environ(strucB.nmax, strucB.lmax, strucB.alchem) kk = 0 for za in strucA.zspecies: if not za in strucB.zspecies: continue senvA = environ(strucA.nmax, strucA.lmax, strucA.alchem) for ia in xrange(strucA.getnz(za)): senvA.add(strucA.getenv(za, ia)) senvB = environ(strucB.nmax, strucB.lmax, strucB.alchem) for ib in xrange(strucB.getnz(za)): senvB.add(strucB.getenv(za, ib)) kk += envk(senvA, senvB, alchem)**zeta kk/=strucA.nenv*strucB.nenv return kk,0 # for zb, nzb in nspeciesB: # for ib in xrange(nzb): # return envk(genvA, genvB, alchem), 0 nenv = 0 if periodic: # replicate structures to match structures of different periodicity # we do not check for compatibility at this stage, just assume that the # matching will be done somehow (otherwise it would be exceedingly hard to manage in case of non-standard alchemy) nspeciesA = [] nspeciesB = [] for z in strucA.zspecies: nspeciesA.append( (z, strucA.getnz(z)) ) for z in strucB.zspecies: nspeciesB.append( (z, strucB.getnz(z)) ) nenv=nenvA = strucA.nenv nenvB = strucB.nenv else: # top up missing atoms with isolated environments # first checks which atoms are present zspecies = sorted(list(set(strucB.zspecies+strucA.zspecies))) nspecies = [] for z in zspecies: nz = max(strucA.getnz(z),strucB.getnz(z)) nspecies.append((z,nz)) nenv += nz nenvA = nenvB = nenv nspeciesA = nspeciesB = nspecies np.set_printoptions(linewidth=500,precision=4) kk = np.zeros((nenvA,nenvB),float) ika = 0 ikb = 0 for za, nza in nspeciesA: for ia in xrange(nza): envA = strucA.getenv(za, ia) ikb = 0 for zb, nzb in nspeciesB: for ib in xrange(nzb): envB = strucB.getenv(zb, ib) if alchem.mu > 0 and (strucA.ismissing(za, ia) ^ strucB.ismissing(zb, ib)): # includes a penalty dependent on "mu", in a way that is consistent with the definition of kernel distance kk[ika,ikb] = exp(-alchem.mu) else: if za == zb or not xspecies: #uncomment to zero out kernels between different species kk[ika,ikb] = envk(envA, envB, alchem)**zeta else: kk[ika,ikb] = 0 ikb+=1 ika+=1 aidx = {} ika=0 for za, nza in nspeciesA: aidx[za] = range(ika,ika+nza) ika+=nza ikb=0 bidx = {} for zb, nzb in nspeciesB: bidx[zb] = range(ikb,ikb+nzb) ikb+=nzb if fout != None: # prints out similarity information for the environment pairs fout.write("# atomic species in the molecules (possibly topped up with dummy isolated atoms): \n") for za, nza in nspeciesA: for ia in xrange(nza): fout.write(" %d " % (za) ) fout.write("\n"); for zb, nzb in nspeciesB: for ib in xrange(nzb): fout.write(" %d " % (zb) ) fout.write("\n"); fout.write("# environment kernel matrix: \n") for r in kk: for e in r: fout.write("%20.14e " % (e) ) fout.write("\n") #fout.write("# environment kernel eigenvalues: \n") #ev = np.linalg.eigvals(kk) #for e in ev: # fout.write("(%8.4e,%8.4e) " % (e.real,e.imag) ) #fout.write("\n"); # Now we have the matrix of scalar products. # We can first find the optimal scalar product kernel # we must find the maximum "cost" if mode == "match": if periodic and nenvA != nenvB: nenv = lcm(nenvA, nenvB) hun = lcm_best_cost(1-kk) else: hun=best_cost(1.0-kk) cost = 1-hun/nenv elif mode == "permanent": # there is no place to hide: cross-species environments are not necessarily zero if peps>0: cost = mcperm(kk, peps) else: cost = xperm(kk) cost = cost/np.math.factorial(nenv)/nenv elif mode == "rematch": cost=rematch(kk, gamma, 1e-6) # hard-coded residual error for regularized gamma # print cost, kk.sum()/(nenv*nenv), envk(strucA.globenv, strucB.globenv, alchem) elif mode == "average": cost = kk.sum()/(nenvA*nenvB) # print 'elem: {}'.format(kk.sum()) # print 'elem norm: {}'.format(cost) # print 'avg norm: {}'.format((nenvA*nenvB)) else: raise ValueError("Unknown global fingerprint mode ", mode) return cost,kk
def structk(strucA, strucB, alchem=alchemy(), periodic=False, mode="match", fout=None, peps=0.0, gamma=1.0, zeta=1.0, xspecies=False): # computes the SOAP similarity KERNEL between two structures by combining atom-centered kernels # possible kernel modes include: # average : scalar product between averaged kernels # match: best-match hungarian kernel # permanent: average over all permutations # top up missing atoms with isolated environments # first checks which atoms are present zspecies = sorted(list(set(strucB.zspecies + strucA.zspecies))) nspecies = [] nenv = 0 for z in zspecies: nz = max(strucA.getnz(z), strucB.getnz(z)) nspecies.append((z, nz)) nenv += nz # Make a mapping from atom idx to (species, species_idx) idx_to_spec = [zip([z] * nz, range(nz)) for z, nz in nspecies] idx_to_spec = [itm for sublist in idx_to_spec for itm in sublist] nsp = len(zspecies) # alchemical matrix for species alchemAB = np.empty((nsp, nsp), dtype=float) for sA in xrange(nsp): for sB in xrange(sA + 1): alchemAB[sA, sB] = alchem.getpair(zspecies[sB], zspecies[sA]) alchemAB[sB, sA] = alchemAB[sA, sB] #prepares the lists of pairs to avoid calling many times getpair further down the line #for i1 in xrange(nsp): # s1 = zspecies[i1] # for i2 in xrange(nsp): # s2 = zspecies[i2] # a=envA.getpair(s1,s2) # b=envB.getpair(s1,s2) # if i1==0 and i2==0: # arrA = np.empty((nenv, nsp, nsp, a.shape[0]), float) # arrB = np.empty((nenv, nsp, nsp, a.shape[0]), float) # arrA[i1,i2,:] = a # arrB[i1,i2,:] = b #first = True #for za, nza in nspecies: # for ia in xrange(nza): # envA = strucA.getenv(za, ia) # ikb = 0 # for zb, nzb in nspecies: # a = envA.getpair(za, zb) # for ib in xrange(nzb): # envB = strucB.getenv(zb, ib) # b = envB.getpair(za, zb) # if first: # arrA = np.empty((nenv, nsp, nsp, a.shape[0]), float) # arrB = np.empty((nenv, nsp, nsp, a.shape[0]), float) # first = False # arrB[ikb,i1,i2,:] = b # ikb+=1 # arrA[ika, i1,i2,:] = a # ika+=1 for ik in range(nenv): i = idx_to_spec[ik] envA = strucA.getenv(i[0], i[1]) envB = strucB.getenv(i[0], i[1]) for i1 in range(nsp): s1 = zspecies[i1] for i2 in range(nsp): s2 = zspecies[i2] a = envA.getpair(s1, s2) b = envB.getpair(s1, s2) if i1 == 0 and i2 == 0 and ik == 0: arrA = np.empty((nenv, nsp, nsp, a.shape[0]), dtype=float) arrB = np.empty((nenv, nsp, nsp, a.shape[0]), dtype=float) arrA[ik, i1, i2, :] = a arrB[ik, i1, i2, :] = b kk = tensordot(arrA, arrB, alchemAB) #dotprod = np.tensordot(arrA, arrB, axes=([3],[3])) #dotprod = np.tensordot(dotprod, alchemAB, axes=([1,4],[0,1])) #kk = np.tensordot(dotprod, alchemAB, axes=([1,3],[0,1])) #kk = np.zeros((nenv,nenv),float) #for ika in range(nenv): # ai = idx_to_spec[ika] # envA = strucA.getenv(ai[0], ai[1]) # for ikb in range(nenv): # bi = idx_to_spec[ikb] # envB = strucB.getenv(bi[0], bi[1]) # res = envk(envA, envB, alchem)**zeta # kk[ika,ikb] = res #ika = 0 #ikb = 0 #for za, nza in nspecies: #for ia in xrange(nza): #envA = strucA.getenv(za, ia) #ikb = 0 #for zb, nzb in nspecies: #for ib in xrange(nzb): #envB = strucB.getenv(zb, ib) #res = envk(envA, envB, alchem)**zeta #kk[ika,ikb] = res #ikb+=1 #ika+=1 # Now we have the matrix of scalar products. # We can first find the optimal scalar product kernel # we must find the maximum "cost" if mode == "rematch": cost = rematch(kk, gamma, 1e-6) # hard-coded residual error for regularized gamma # print cost, kk.sum()/(nenv*nenv), envk(strucA.globenv, strucB.globenv, alchem) else: raise ValueError("Unknown global fingerprint mode ", mode) return cost, kk