Ejemplo n.º 1
0
def loss(theta1, theta2, angles_rad, TE, TR):
    T = len(angles_rad)
    
    x1 = epg.FSE_signal(angles_rad, TE, theta1['T1'], theta1['T2']) * (1 - exp(-(TR - T * TE)/theta1['T1']))
    x2 = epg.FSE_signal(angles_rad, TE, theta2['T1'], theta2['T2']) * (1 - exp(-(TR - T * TE)/theta2['T1'])) 

    return 0.5 * np.linalg.norm(x1, ord=2)**2 + 0.5 * np.linalg.norm(x2, ord=2)**2 - np.dot(x1.ravel(), x2.ravel())
Ejemplo n.º 2
0
def loss_prime(theta1, theta2, angles_rad, TE, TR):
    T = len(angles_rad)
    x1 = epg.FSE_signal(angles_rad, TE, theta1['T1'], theta1['T2']).ravel() * (
        1 - exp(-(TR - T * TE) / theta1['T1']))
    x2 = epg.FSE_signal(angles_rad, TE, theta2['T1'], theta2['T2']).ravel() * (
        1 - exp(-(TR - T * TE) / theta2['T1']))

    T = len(angles_rad)
    alpha_prime = np.zeros((T, ))

    for i in range(T):
        x1_prime = epg.FSE_signal_prime_alpha_idx(
            angles_rad, TE, theta1['T1'], theta1['T2'],
            i).ravel() * (1 - exp(-(TR - T * TE) / theta1['T1']))
        x2_prime = epg.FSE_signal_prime_alpha_idx(
            angles_rad, TE, theta2['T1'], theta2['T2'],
            i).ravel() * (1 - exp(-(TR - T * TE) / theta2['T1']))
        M1 = np.dot(x1, x1_prime)
        M2 = np.dot(x2, x2_prime)
        M3 = np.dot(x1, x2_prime)
        M4 = np.dot(x2, x1_prime)

        alpha_prime[i] = M1 + M2 - M3 - M4

    return alpha_prime
Ejemplo n.º 3
0
def normalized_loss(theta1, theta2, angles_rad, TE, TR):
    T = len(angles_rad)
    x1 = epg.FSE_signal(angles_rad, TE, theta1['T1'], theta1['T2']) * (1 - exp(-(TR - T * TE)/theta1['T1']))
    x2 = epg.FSE_signal(angles_rad, TE, theta2['T1'], theta2['T2']) * (1 - exp(-(TR - T * TE)/theta2['T1']))

    x1 = x1 / np.linalg.norm(x1, ord=2)
    x2 = x2 / np.linalg.norm(x2, ord=2)

    return - np.dot(x1.ravel(), x2.ravel())
Ejemplo n.º 4
0
 def plot_vals(self, thetas):
     plt.subplot(2,1,1)
     plt.plot(range(self.T), RAD2DEG(self.angles_rad), 'o-')
     plt.xlim((0,self.T))
     plt.subplot(2,1,2)
     for theta in thetas:
         plt.plot(range(self.T), epg.FSE_signal(self.angles_rad, self.TE, theta['T1'], theta['T2']))
     plt.xlim((0,self.T))
     plt.ylim((0,1))
Ejemplo n.º 5
0
def loss(thetas, angles_rad, TE, TR):
    T = len(angles_rad)
    
    l = 0
    for theta in thetas:
        x1 = epg.FSE_signal(angles_rad, TE, theta['T1'], theta['T2']) * (1 - exp(-(TR - T * TE)/theta['T1']))
        l += 0.5 * np.dot(x1.ravel(), x1.ravel())

    return l
Ejemplo n.º 6
0
def loss_prime(thetas, angles_rad, TE, TR):

    T = len(angles_rad)
    alpha_prime = np.zeros((T,))

    for theta in thetas:

        x1 = epg.FSE_signal(angles_rad, TE, theta['T1'], theta['T2']).ravel() * (1 - exp(-(TR - T * TE)/theta['T1']))

        for i in range(T):

            x1_prime = epg.FSE_signal_prime_alpha_idx(angles_rad, TE, theta['T1'], theta['T2'], i).ravel() * (1 - exp(-(TR - T * TE)/theta['T1']))
            alpha_prime[i] += np.dot(x1, x1_prime)

    return alpha_prime
Ejemplo n.º 7
0
def t1t2shuffle_prime_alpha_idx(angles_rad, TE, TRs, M0, T1, T2, idx):
    """derivative of signal equation w.r.t. the i'th flip angle"""

    T = angles_rad.size

    URs = TRs - (T+1)*TE # T + 1 to account for fast recovery

    fi = epg.FSE_signal(angles_rad, TE, T1, T2)
    fi_prime = epg.FSE_signal_prime_alpha_idx(angles_rad, TE, T1, T2, idx)

    Ej = T1_recovery(URs, T1)[None,:] 

    a = 1 - Ej
    b = 1 - Ej * fi[-1]

    sig_prime = M0 * a / b**2 * (fi_prime * b + fi * Ej * fi_prime[-1])
    
    return sig_prime.ravel(order='F')
Ejemplo n.º 8
0
 def plot_vals(self, thetas):
     plt.subplot(2,1,1)
     plt.plot(range(self.T), RAD2DEG(self.angles_rad), 'o-')
     plt.title('ETL={} POW={:.1f} MAX={:.0f} MIN={:.0f}'.format(
         self.T, calc_power(self.angles_rad), RAD2DEG(np.max(self.angles_rad)), RAD2DEG(np.min(self.angles_rad))))
     plt.xlim((0, self.T))
     #plt.ylim((np.max((0,.9*np.min(RAD2DEG(self.angles_rad))), 180)))
     plt.ylim((.5*np.min(RAD2DEG(self.angles_rad)), 180))
     plt.ylabel('flip angles (deg)')
     plt.subplot(2,1,2)
     #leg_str = []
     for theta in thetas:
         plt.plot(range(self.T), epg.FSE_signal(self.angles_rad, self.TE, theta['T1'], theta['T2']) * (1 - exp(-(self.TR - self.T * self.TE)/theta['T1'])))
         #leg_str.append('T1/T2={:.0f}/{:.0f}'.format(1000*theta['T1'], 1000*theta['T2']))
     #plt.legend(leg_str)
     plt.xlim((0,self.T))
     plt.ylim((0, 1.))
     plt.ylabel('signal level')
Ejemplo n.º 9
0
 def forward(self, theta):
     return epg.FSE_signal(self.angles_rad, TE, theta['T1'],
                           theta['T2']).ravel()
Ejemplo n.º 10
0
        T = int(sys.argv[1])
    else:
        T = 10

    angles = 150 * np.ones((T, ))
    angles = read_angles('../data/flipangles.txt.408183520')

    TT = len(angles)
    if TT < T:
        T = TT
    else:
        angles = angles[:T]

    angles_rad = DEG2RAD(angles)

    S = epg.FSE_signal(angles_rad, TE, T1, T2)
    S2 = abs(S)

    theta1 = {'T1': 1000e-3, 'T2': 20e-3}
    theta2 = {'T1': 1000e-3, 'T2': 100e-3}

    t1 = time.time()
    NG = numerical_gradient(theta1, theta2, angles_rad, TE, TR)
    t2 = time.time()
    LP = loss_prime(theta1, theta2, angles_rad, TE, TR)
    t3 = time.time()

    NG_time = t2 - t1
    LP_time = t3 - t2

    print 'Numerical Gradient\t(%03.3f s)\t' % NG_time, NG