Ejemplo n.º 1
0
    def test_SCF_exact(self):
        
        nexciton= 1
        D_value = np.array([0.0, 0.0])
        mol = construct_mol(nlevels, D_value=D_value)
        TDH.construct_Ham_vib(mol)
        # DMRG calculation
        procedure = [[40,0.4],[40,0.2],[40,0.1],[40,0],[40,0]]
        
        MPS, MPSdim, MPSQN, MPO, MPOdim, MPOQN, MPOQNidx, MPOQNtot, ephtable, pbond = \
            MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton)
        energy = MPSsolver.optimization(MPS, MPSdim, MPSQN, MPO, MPOdim, 
                ephtable, pbond, nexciton, procedure, method="2site")
        dmrg_e = mpslib.dot(MPS, mpslib.mapply(MPO, MPS))
        
        # print occupation
        dmrg_occ = []
        for i in [0,1,2]:
            MPO, MPOdim = MPSsolver.construct_onsiteMPO(mol,pbond,"a^\dagger a",dipole=False,sitelist=[i])
            dmrg_occ.append(mpslib.dot(MPS, mpslib.mapply(MPO, MPS)))
        print "dmrg_occ", dmrg_occ

        WFN, Etot = TDH.SCF(mol, J, nexciton)
        self.assertAlmostEqual(Etot, dmrg_e)
        
        fe, fv = 1, 6
        HAM, Etot, A_el = TDH.construct_H_Ham(mol, J, nexciton, WFN, fe, fv, debug=True)
        self.assertAlmostEqual(Etot, dmrg_e)
        self.assertTrue(np.allclose(A_el.flatten(), dmrg_occ))
Ejemplo n.º 2
0
def Exact_Spectra_hybrid_TDDMRG_TDH(spectratype, mol, J, MPS, dipoleMPO, WFN, \
        nsteps, dt, E_offset=0.):
    '''
    exact spectra by hybrid TDDMRG/TDH approach for ZT abs and emi
    '''
    assert spectratype in ["emi", "abs"]

    if spectratype == "emi":
        space = "GS"
    else:
        space = "EX"

    AketMPS = mpslib.mapply(dipoleMPO, MPS)
    factor = mpslib.norm(AketMPS)
    AketMPS = mpslib.scale(AketMPS, 1. / factor)
    AbraMPS = mpslib.add(AketMPS, None)

    WFN[-1] *= factor
    WFNbra = copy.deepcopy(WFN)

    MPOprop, HAM, Etot = ExactPropagator_hybrid_TDDMRG_TDH(mol,
                                                           J,
                                                           AketMPS,
                                                           WFN,
                                                           -1.0j * dt,
                                                           space=space)
    print "TD Etot", Etot

    autocorr = []
    t = 0.
    for istep in xrange(nsteps):
        if istep != 0:
            t += dt
            WFN[-1] *= np.exp(-1.0j * Etot * dt)
            AketMPS = mpslib.mapply(MPOprop, AketMPS)
            TDH.unitary_propagation(HAM, WFN, dt)

        ft = mpslib.dot(mpslib.conj(AbraMPS), AketMPS)
        ft *= np.conj(WFNbra[-1]) * WFN[-1] * np.exp(-1.0j * E_offset * t)
        for iwfn in xrange(len(WFN) - 1):
            ft *= np.vdot(WFNbra[iwfn], WFN[iwfn])
        autocorr.append(ft)
        autocorr_store(autocorr, istep)

    return autocorr
Ejemplo n.º 3
0
    def prop(DMMPO, DMH, dt):
        MPOprop, HAM, Etot = ExactPropagator_hybrid_TDDMRG_TDH(mol, J, \
                DMMPO,  DMH, -1.0j*dt, space="GS", QNargs=QNargs)
        DMMPO = mpslib.mapply(DMMPO, MPOprop, QNargs=QNargs)

        DMH[-1] *= np.exp(-1.0j * Etot * dt)
        for iham, hamprop in enumerate(HAM):
            w, v = scipy.linalg.eigh(hamprop)
            DMH[iham] = DMH[iham].dot(v).dot(np.diag(np.exp(-1.0j * dt *
                                                            w))).dot(v.T)

        DMMPO, DMH = hybrid_TDDMRG_TDH(mol, J, DMMPO, DMH, \
                -dt, ephtable, thresh=thresh, QNargs=QNargs, TDDMRG_prop_method=TDDMRG_prop_method, normalize=1.0)

        return DMMPO, DMH
Ejemplo n.º 4
0
    def test_FT_dynamics_hybrid_TDDMRG_TDH(self, value):

        mol, J = parameter_PBI.construct_mol(4, nphs=value[0])
        TDH.construct_Ham_vib(mol, hybrid=True)
        nexciton = 0
        dmrg_procedure = [[20, 0.5], [20, 0.3], [10, 0.2], [5, 0], [1, 0]]
        MPS, MPSdim, MPSQN, MPO, MPOdim, MPOQN, MPOQNidx, MPOQNtot, ephtable, pbond = \
            MPSsolver.construct_MPS_MPO_2(mol, J, dmrg_procedure[0][0], nexciton)

        QNargs = [ephtable, False]
        T = 2000.
        insteps = 1
        iMPS, WFN = hybrid_TDDMRG_TDH.FT_DM_hybrid_TDDMRG_TDH(mol, J, nexciton, T, \
                insteps, pbond, ephtable, thresh=1e-3, cleanexciton=nexciton,\
                QNargs=QNargs, space="GS")

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol, pbond, "a^\dagger",\
                QNargs=QNargs, sitelist=[0])

        iMPS = mpslib.mapply(dipoleMPO, iMPS, QNargs=QNargs)
        norm = mpslib.norm(iMPS, QNargs=QNargs)
        WFN[-1] *= norm
        iMPS = mpslib.scale(iMPS, 1. / norm, QNargs=QNargs)
        iMPS = mpslib.MPSdtype_convert(iMPS, QNargs=QNargs)
        WFN = [wfn.astype(np.complex128) for wfn in WFN[:-1]] + [WFN[-1]]

        nsteps = 90
        dt = 10.0

        MPOs = []
        for imol in xrange(len(mol)):
            dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol, pbond, "a^\dagger a",\
                QNargs=QNargs, sitelist=[imol])
            MPOs.append(dipoleMPO)

        data = hybrid_TDDMRG_TDH.dynamics_hybrid_TDDMRG_TDH(mol, J, iMPS, \
                WFN, nsteps, dt, ephtable,thresh=1e-3, \
                TDDMRG_prop_method="C_RK4", QNargs=QNargs, property_MPOs=MPOs)

        with open("std_data/hybrid_TDDMRG_TDH/FT_occ" + str(value[0]) + ".npy",
                  'rb') as f:
            std = np.load(f)
        self.assertTrue(np.allclose(data, std))
Ejemplo n.º 5
0
def ZeroTcorr_hybrid_TDDMRG_TDH(mol, J, iMPS, dipoleMPO, WFN0, nsteps, dt, ephtable,\
        thresh=0., TDDMRG_prop_method="C_RK4", E_offset=0., cleanexciton=None, QNargs=None):
    '''
    ZT linear spectra
    '''

    AketMPS = mpslib.mapply(dipoleMPO, iMPS, QNargs=QNargs)
    factor = mpslib.norm(AketMPS, QNargs=QNargs)
    AketMPS = mpslib.scale(AketMPS, 1. / factor, QNargs=QNargs)
    AbraMPS = mpslib.add(AketMPS, None, QNargs=QNargs)

    WFN0[-1] *= factor
    WFNket = copy.deepcopy(WFN0)
    WFNbra = copy.deepcopy(WFN0)

    autocorr = []
    t = 0.0
    for istep in xrange(nsteps):
        if istep != 0:
            t += dt
            if istep % 2 == 1:
                AketMPS, WFNket = hybrid_TDDMRG_TDH(mol, J, AketMPS, WFNket,\
                        dt, ephtable, thresh=thresh, cleanexciton=cleanexciton, QNargs=QNargs, \
                        TDDMRG_prop_method=TDDMRG_prop_method, TDH_prop_method="unitary")
            else:
                AbraMPS, WFNbra = hybrid_TDDMRG_TDH(mol, J, AbraMPS, WFNbra,\
                        -dt, ephtable, thresh=thresh, cleanexciton=cleanexciton, QNargs=QNargs, \
                        TDDMRG_prop_method=TDDMRG_prop_method, TDH_prop_method="unitary")

        ft = mpslib.dot(mpslib.conj(AbraMPS, QNargs=QNargs),
                        AketMPS,
                        QNargs=QNargs)
        ft *= np.conj(WFNbra[-1]) * WFNket[-1] * np.exp(-1.0j * E_offset * t)
        for iwfn in xrange(len(WFN0) - 1):
            ft *= np.vdot(WFNbra[iwfn], WFNket[iwfn])

        autocorr.append(ft)
        autocorr_store(autocorr, istep)

    return autocorr
Ejemplo n.º 6
0
def FT_DM_hybrid_TDDMRG_TDH(mol, J, nexciton, T, nsteps, pbond, ephtable, \
        thresh=0., TDDMRG_prop_method="C_RK4", cleanexciton=None, QNargs=None, space=None):
    '''
    construct the finite temperature density matrix by hybrid TDDMRG/TDH method
    '''
    # initial state infinite T density matrix
    # TDDMRG
    if nexciton == 0:
        DMMPS, DMMPSdim = tMPS.Max_Entangled_GS_MPS(mol,
                                                    pbond,
                                                    norm=True,
                                                    QNargs=QNargs)
        DMMPO = tMPS.hilbert_to_liouville(DMMPS, QNargs=QNargs)
    elif nexciton == 1:
        DMMPO, DMMPOdim = tMPS.Max_Entangled_EX_MPO(mol,
                                                    pbond,
                                                    norm=True,
                                                    QNargs=QNargs)
    DMMPO = mpslib.MPSdtype_convert(DMMPO, QNargs=QNargs)

    # TDH
    DMH = []

    nmols = len(mol)
    for imol in xrange(nmols):
        for iph in xrange(mol[imol].nphs_hybrid):
            dim = mol[imol].ph_hybrid[iph].H_vib_indep.shape[0]
            DMH.append(np.diag([1.0] * dim, k=0))
    # the coefficent a
    DMH.append(1.0)

    mflib.normalize(DMH)

    beta = constant.T2beta(T) / 2.0
    dbeta = beta / float(nsteps)

    for istep in xrange(nsteps):
        if space is None:
            DMMPO, DMH = hybrid_TDDMRG_TDH(mol, J, DMMPO, DMH, dbeta/1.0j, ephtable, \
                    thresh=thresh, cleanexciton=cleanexciton, QNargs=QNargs, \
                    TDDMRG_prop_method=TDDMRG_prop_method, normalize=1.0)
        else:
            MPOprop, HAM, Etot = ExactPropagator_hybrid_TDDMRG_TDH(mol, J, \
                    DMMPO, DMH, -1.0*dbeta, space=space, QNargs=QNargs)
            DMH[-1] *= np.exp(-1.0 * Etot * dbeta)
            TDH.unitary_propagation(HAM, DMH, dbeta / 1.0j)

            DMMPO = mpslib.mapply(MPOprop, DMMPO, QNargs=QNargs)
            # DMMPO is not normalize in the imaginary time domain
            MPOnorm = mpslib.norm(DMMPO, QNargs=QNargs)
            DMMPO = mpslib.scale(DMMPO, 1. / MPOnorm, QNargs=QNargs)

            DMH[-1] *= MPOnorm

        # normlize the dm (physical \otimes ancilla)
        mflib.normalize(DMH)

    # divided by np.sqrt(partition function)
    DMH[-1] = 1.0

    return DMMPO, DMH
Ejemplo n.º 7
0
def FiniteT_spectra_TDDMRG_TDH(spectratype, T, mol, J, nsteps, dt, insteps, pbond, ephtable,\
        thresh=0., ithresh=1e-4, TDDMRG_prop_method="C_RK4", E_offset=0., QNargs=None):
    '''
    FT linear spectra
    '''

    assert spectratype in ["abs", "emi"]

    dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol,
                                                            pbond,
                                                            "a^\dagger",
                                                            dipole=True,
                                                            QNargs=QNargs)

    # construct initial thermal equilibrium density matrix and apply dipole matrix
    if spectratype == "abs":
        nexciton = 0
        DMMPO, DMH = FT_DM_hybrid_TDDMRG_TDH(mol, J, nexciton, T, insteps, pbond, ephtable, \
        thresh=ithresh, TDDMRG_prop_method=TDDMRG_prop_method, QNargs=QNargs, space="GS")
        DMMPOket = mpslib.mapply(dipoleMPO, DMMPO, QNargs=QNargs)
    else:
        nexciton = 1
        DMMPO, DMH = FT_DM_hybrid_TDDMRG_TDH(mol, J, nexciton, T, insteps, pbond, ephtable, \
        thresh=ithresh, TDDMRG_prop_method=TDDMRG_prop_method, QNargs=QNargs, space=None)
        if QNargs is not None:
            dipoleMPO[1] = [[0] * len(impsdim) for impsdim in dipoleMPO[1]]
            dipoleMPO[3] = 0
        DMMPOket = mpslib.mapply(DMMPO, dipoleMPO, QNargs=QNargs)

    factor = mpslib.norm(DMMPOket, QNargs=QNargs)
    DMMPOket = mpslib.scale(DMMPOket, 1. / factor, QNargs=QNargs)
    DMMPObra = mpslib.add(DMMPOket, None, QNargs=QNargs)

    DMH[-1] *= factor
    DMHket = copy.deepcopy(DMH)
    DMHbra = copy.deepcopy(DMH)

    autocorr = []
    t = 0.0

    def prop(DMMPO, DMH, dt):
        MPOprop, HAM, Etot = ExactPropagator_hybrid_TDDMRG_TDH(mol, J, \
                DMMPO,  DMH, -1.0j*dt, space="GS", QNargs=QNargs)
        DMMPO = mpslib.mapply(DMMPO, MPOprop, QNargs=QNargs)

        DMH[-1] *= np.exp(-1.0j * Etot * dt)
        for iham, hamprop in enumerate(HAM):
            w, v = scipy.linalg.eigh(hamprop)
            DMH[iham] = DMH[iham].dot(v).dot(np.diag(np.exp(-1.0j * dt *
                                                            w))).dot(v.T)

        DMMPO, DMH = hybrid_TDDMRG_TDH(mol, J, DMMPO, DMH, \
                -dt, ephtable, thresh=thresh, QNargs=QNargs, TDDMRG_prop_method=TDDMRG_prop_method, normalize=1.0)

        return DMMPO, DMH

    print("Real time dynamics starts!")

    for istep in xrange(nsteps):
        print("istep=", istep)
        if istep != 0:
            t += dt
            if istep % 2 == 0:
                DMMPObra, DMHbra = prop(DMMPObra, DMHbra, dt)
            else:
                DMMPOket, DMHket = prop(DMMPOket, DMHket, -dt)

        ft = mpslib.dot(mpslib.conj(DMMPObra, QNargs=QNargs),
                        DMMPOket,
                        QNargs=QNargs)
        ft *= np.conj(DMHbra[-1]) * DMHket[-1]
        for idm in xrange(len(DMH) - 1):
            ft *= np.vdot(DMHbra[idm], DMHket[idm])

        if spectratype == "emi":
            ft = np.conj(ft)

        # for emi bra and ket is conjugated
        ft *= np.exp(-1.0j * E_offset * t)

        autocorr.append(ft)
        autocorr_store(autocorr, istep)

    return autocorr