Ejemplo n.º 1
0
    def pause_metrics(self):
        """Estimate average number of pauses and average fraction of time spent in a pause

        Attempts to detect pauses with a variety of conditions and averages results together.

        Pauses that are consistently detected contribute more to estimates.

        Returns
        -------
        avg_n_pauses : average number of pauses detected across conditions
        avg_pause_frac : average fraction of interval (between start and end) spent in a pause
        max_reliability : max fraction of times most reliable pause was detected given weights tested
        n_max_rel_pauses : number of pauses detected with `max_reliability`
        """

        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(self.t, thresholds)

        weight = 1.0
        pause_list = self._process_pauses(weight)

        if len(pause_list) == 0:
            return 0, 0.

        n_pauses = len(pause_list)
        pause_frac = isis[pause_list].sum()
        pause_frac /= self.end - self.start

        return n_pauses, pause_frac
Ejemplo n.º 2
0
    def _process_spike_related_features(self):
        t = self.t

        if len(self._spikes_df) == 0:
            self._sweep_features["avg_rate"] = 0
            return

        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(t, thresholds)
        with warnings.catch_warnings():
            # ignore mean of empty slice warnings here
            warnings.filterwarnings("ignore", category=RuntimeWarning, module="numpy")

            sweep_level_features = {
                "adapt": ft.adaptation_index(isis),
                "latency": ft.latency(t, thresholds, self.start),
                "isi_cv": (isis.std() / isis.mean()) if len(isis) >= 1 else np.nan,
                "mean_isi": isis.mean(),
                "median_isi": np.median(isis),
                "first_isi": isis[0] if len(isis) >= 1 else np.nan,
                "avg_rate": ft.average_rate(t, thresholds, self.start, self.end),
            }

        for k, v in sweep_level_features.iteritems():
            self._sweep_features[k] = v
Ejemplo n.º 3
0
    def _process_pauses(self, cost_weight=1.0):
        # Pauses are unusually long ISIs with a "detour reset" among delay resets
        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(self.t, thresholds)
        isi_types = self._spikes_df["isi_type"][:-1].values

        return ft.detect_pauses(isis, isi_types, cost_weight)
Ejemplo n.º 4
0
    def pause_metrics(self):
        """Estimate average number of pauses and average fraction of time spent in a pause

        Attempts to detect pauses with a variety of conditions and averages results together.

        Pauses that are consistently detected contribute more to estimates.

        Returns
        -------
        avg_n_pauses : average number of pauses detected across conditions
        avg_pause_frac : average fraction of interval (between start and end) spent in a pause
        max_reliability : max fraction of times most reliable pause was detected given weights tested
        n_max_rel_pauses : number of pauses detected with `max_reliability`
        """

        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(self.t, thresholds)

        weight = 1.0
        pause_list = self._process_pauses(weight)

        if len(pause_list) == 0:
            return 0, 0.

        n_pauses = len(pause_list)
        pause_frac = isis[pause_list].sum()
        pause_frac /= self.end - self.start

        return n_pauses, pause_frac
Ejemplo n.º 5
0
    def _process_pauses(self, cost_weight=1.0):
        # Pauses are unusually long ISIs with a "detour reset" among delay resets
        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(self.t, thresholds)
        isi_types = self._spikes_df["isi_type"][:-1].values

        return ft.detect_pauses(isis, isi_types, cost_weight)
Ejemplo n.º 6
0
    def _process_spike_related_features(self):
        t = self.t

        if len(self._spikes_df) == 0:
            self._sweep_features["avg_rate"] = 0
            return

        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(t, thresholds)
        with warnings.catch_warnings():
            # ignore mean of empty slice warnings here
            warnings.filterwarnings("ignore",
                                    category=RuntimeWarning,
                                    module="numpy")

            sweep_level_features = {
                "adapt": ft.adaptation_index(isis),
                "latency": ft.latency(t, thresholds, self.start),
                "isi_cv":
                (isis.std() / isis.mean()) if len(isis) >= 1 else np.nan,
                "mean_isi": isis.mean(),
                "median_isi": np.median(isis),
                "first_isi": isis[0] if len(isis) >= 1 else np.nan,
                "avg_rate": ft.average_rate(t, thresholds, self.start,
                                            self.end),
            }

        for k, v in sweep_level_features.iteritems():
            self._sweep_features[k] = v
Ejemplo n.º 7
0
    def _process_spike_related_features(self):
        t = self.t

        if len(self._spikes_df) == 0:
            self._sweep_features["avg_rate"] = 0
            return
        
        
        
        # Start recently added
        peak_heights = None
        if not self._spikes_df.empty:
            peak_heights = self._spikes_df['peak_v'].values - self._spikes_df['threshold_v'].values
        # End recently added
        
        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(t, thresholds)
        with warnings.catch_warnings():
            # ignore mean of empty slice warnings here
            warnings.filterwarnings("ignore", category=RuntimeWarning, module="numpy")

            sweep_level_features = {
                "adapt": ft.adaptation_index(isis),
                "latency": ft.latency(t, thresholds, self.start),
                "isi_cv": (isis.std() / isis.mean()) if len(isis) >= 1 else np.nan,
                "mean_isi": isis.mean() if len(isis) > 0 else np.nan,
                "median_isi": np.median(isis),
                "first_isi": isis[0] if len(isis) >= 1 else np.nan,
                # We want at least 3 peaks (i.e. 2 isis) to calculate the adaptation index (given in percentage)
                "isi_adapt": (isis[1]/isis[0]) if len(isis) >= 2 else np.nan,
                
                # Start recently added
                #"AP_amp_adapt": self._spikes_df['peak_height'][1]/self._spikes_df['peak_height'][0] if self._spikes_df.shape[1] >= 2 else np.nan,
                "AP_amp_adapt": (peak_heights[1]/peak_heights[0]) if peak_heights.size >= 2 else np.nan,
                #"AP_amp_change": ft.ap_amp_change(self._spikes_df['peak_height'].values) if self._spikes_df.shape.shape[1] >= 2 else np.nan,
                "AP_amp_adapt_average": ft.ap_amp_adaptation(peak_heights) if peak_heights.size >= 2 else np.nan,
                # End recently added
                "AP_fano_factor": ((peak_heights.std()**2)/peak_heights.mean()) if peak_heights.size >=2 else np.nan,
                
                "AP_cv": ((peak_heights.std())/peak_heights.mean()) if peak_heights.size >=2 else np.nan,
                "isi_adapt_average": ft.isi_adaptation(isis) if len(isis) >= 2 else np.nan,
                #"norm_sq_isis": ft.norm_sq_diff(isis) if len(isis) >= 2 else np.nan,
                # You could in principle make the Fano factor and cv 0 for n = 1 ISI, but we choose to make them Nan, i.e. they
                # are not that informative here
                
                "fano_factor": ((isis.std()**2) / isis.mean()) if len(isis) > 1 else np.nan,
                "cv": (isis.std() / isis.mean()) if len(isis) > 1 else np.nan,
                "avg_rate": ft.average_rate(t, thresholds, self.start, self.end)
                        }

        for k, v in six.iteritems(sweep_level_features):
            self._sweep_features[k] = v
Ejemplo n.º 8
0
    def _process_bursts(self, tol=0.5, pause_cost=1.0):
        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(self.t, thresholds)

        isi_types = self._spikes_df["isi_type"][:-1].values

        fast_tr_v = self._spikes_df["fast_trough_v"].values
        fast_tr_t = self._spikes_df["fast_trough_t"].values
        slow_tr_v = self._spikes_df["slow_trough_v"].values
        slow_tr_t = self._spikes_df["slow_trough_t"].values
        thr_v = self._spikes_df["threshold_v"].values

        bursts = ft.detect_bursts(isis, isi_types, fast_tr_v, fast_tr_t, slow_tr_v, slow_tr_t,
                  thr_v, tol, pause_cost)

        return np.array(bursts)
Ejemplo n.º 9
0
    def _process_bursts(self, tol=0.5, pause_cost=1.0):
        thresholds = self._spikes_df["threshold_index"].values.astype(int)
        isis = ft.get_isis(self.t, thresholds)

        isi_types = self._spikes_df["isi_type"][:-1].values

        fast_tr_v = self._spikes_df["fast_trough_v"].values
        fast_tr_t = self._spikes_df["fast_trough_t"].values
        slow_tr_v = self._spikes_df["slow_trough_v"].values
        slow_tr_t = self._spikes_df["slow_trough_t"].values
        thr_v = self._spikes_df["threshold_v"].values

        bursts = ft.detect_bursts(isis, isi_types, fast_tr_v, fast_tr_t, slow_tr_v, slow_tr_t,
                  thr_v, tol, pause_cost)

        return np.array(bursts)