Ejemplo n.º 1
0
    def test_stochastic_well_mixed(self):

        S, E, I, R = sympy.symbols("S E I R")

        N = 75000
        tmax = 100
        model = SymbolicEpiModel([S, E, I, R], N)
        model.set_processes([
            (S, I, 2, E, I),
            (I, 1, R),
            (E, 1, I),
        ])
        model.set_initial_conditions({S: N - 100, I: 100})

        tt = np.linspace(0, tmax, 10)
        result_int = model.integrate(tt)

        t, result_sim = model.simulate(tmax,
                                       sampling_dt=1,
                                       return_compartments=[S, R])

        for c, res in result_sim.items():
            #print(c, np.abs(1-res[-1]/result_int[c][-1]))
            #print(c, np.abs(1-res[-1]/result_sim[c][-1]))
            assert (np.abs(1 - res[-1] / result_int[c][-1]) < 0.05)
Ejemplo n.º 2
0
def symbolic_simulation_temporally_forced():
    from epipack import SymbolicEpiModel
    import sympy as sy
    from epipack.plottools import plot
    import numpy as np

    S, I, R, eta, rho, omega, t, T = \
            sy.symbols("S I R eta rho omega t T")

    N = 1000
    SIRS = SymbolicEpiModel([S,I,R],N)\
        .set_processes([
            (S, I, 3+sy.cos(2*sy.pi*t/T), I, I),
            (I, rho, R),
            (R, omega, S),
        ])

    SIRS.set_parameter_values({
        rho: 1,
        omega: 1 / 14,
        T: 100,
    })
    SIRS.set_initial_conditions({S: N - 100, I: 100})
    _t = np.linspace(0, 150, 1000)
    result = SIRS.integrate(_t)
    t_sim, result_sim = SIRS.simulate(max(_t))

    ax = plot(_t, result)
    plot(t_sim, result_sim, ax=ax)
    ax.get_figure().savefig('symbolic_model_time_varying_rate.png', dpi=300)
Ejemplo n.º 3
0
    def test_time_dependent_rates(self):

        B, t = sympy.symbols("B t")
        epi = SymbolicEpiModel([B])
        epi.add_fission_processes([
            (B, t, B, B),
        ])
        epi.set_initial_conditions({B: 1})
        result = epi.integrate([0, 3], adopt_final_state=True)
        assert (np.isclose(epi.y0[0], np.exp(3**2 / 2)))
        epi.set_initial_conditions({B: 1})
        result = epi.integrate(np.linspace(0, 3, 10000),
                               integrator='euler',
                               adopt_final_state=True)
        eul = epi.y0[0]
        real = np.exp(3**2 / 2)
        assert (np.abs(1 - eul / real) < 1e-2)