Ejemplo n.º 1
0
class TestFinalPnl:
    universe_hand = Universe(
        pd.DataFrame(
            {"A0": [3, 1, 4, 1, 5, 9, 2], "A1": [2, 7, 1, 8, 2, 8, 1],},
            index=range(7),
            dtype=float,
        )
    )

    @pytest.mark.parametrize("seed", range(10))
    def test_random(self, seed):
        universe = make_randomwalk(n_bars=100, n_assets=10, seed=seed)
        trade = RandomTrader(n_trades=1, seed=seed).run(universe).trades[0]
        result = trade.final_pnl(universe)
        expected = trade.array_pnl(universe)[-1]

        assert np.allclose(result, expected)

    @pytest.mark.parametrize("a", [-2.0, -1.0, 0.0, 1.0, 2.0])
    @pytest.mark.parametrize("seed", range(1))
    def test_linearity_mul(self, a, seed):
        universe = make_randomwalk(seed=seed)
        trade0 = RandomTrader(n_trades=1, seed=seed).run(universe).trades[0]
        tradeA = a * trade0
        result0 = trade0.final_pnl(universe)
        resultA = tradeA.final_pnl(universe)
        assert np.allclose(a * result0, resultA)
Ejemplo n.º 2
0
class TestColumn:

    universe = Universe(
        pd.DataFrame({f"A{i}": range(10)
                      for i in range(10)},
                     index=[f"B{i}" for i in range(10)]))

    trades = [
        Trade(
            asset=["A0", "A1"],
            lot=[1, 2],
            open_bar="B0",
            shut_bar="B8",
            take=1.0,
            stop=-1.0,
        ),
        Trade(
            asset=["A2", "A3"],
            lot=[3, 4],
            open_bar="B1",
            shut_bar="B9",
            take=2.0,
            stop=-2.0,
        ),
    ]

    def _get_history(self):
        strategy = DeterminedTrader(trades=self.trades).run(self.universe)
        return History(strategy)

    def test_trade_id(self):
        result = self._get_history().trade_id
        assert np.array_equal(result, [0, 0, 1, 1])

    def test_order_id(self):
        result = self._get_history().order_id
        assert np.array_equal(result, [0, 1, 2, 3])

    def test_asset(self):
        result = self._get_history().asset
        assert np.array_equal(result, ["A0", "A1", "A2", "A3"])

    def test_open_bar(self):
        result = self._get_history().open_bar
        assert np.array_equal(result, ["B0", "B0", "B1", "B1"])

    def test_shut_bar(self):
        result = self._get_history().shut_bar
        assert np.array_equal(result, ["B8", "B8", "B9", "B9"])

    def test_take(self):
        result = self._get_history().take
        assert np.array_equal(result, [1.0, 1.0, 2.0, 2.0])

    def test_stop(self):
        result = self._get_history().stop
        assert np.array_equal(result, [-1.0, -1.0, -2.0, -2.0])

    def test_pnl(self):
        pass  # TODO
Ejemplo n.º 3
0
class TestSeriesExposure:
    """
    Test `Trade.series_exposure()`.
    """

    universe_hand = Universe(
        pd.DataFrame(
            {"A0": [3, 1, 4, 1, 5, 9, 2], "A1": [2, 7, 1, 8, 2, 8, 1],},
            index=range(7),
            dtype=float,
        )
    )

    @pytest.mark.parametrize("net", [True, False])
    def test_hand(self, net):
        trade = Trade(asset=["A0", "A1"], lot=[2, -3], open_bar=1, shut_bar=3)
        result = trade.series_exposure(net=net, universe=self.universe_hand)
        if net:
            expected = [0, -19, 5, -22, 0, 0, 0]
        else:
            expected = [0, 23, 11, 26, 0, 0, 0]

        assert np.allclose(result, expected)

    def test_value_zero(self):
        trade = Trade(asset=["A0", "A1"], lot=[0, 0], open_bar=1, shut_bar=3)
        result = trade.series_exposure(self.universe_hand)
        expected = np.zeros((self.universe_hand.n_bars))
        assert np.allclose(result, expected)

    # Abs exposure doesn't satisfy linearity add
    @pytest.mark.parametrize("net", [True])
    @pytest.mark.parametrize("seed", range(1))
    def test_linearity_add(self, net, seed):
        np.random.seed(seed)
        lot0, lot1 = np.random.random(2)
        trade0 = Trade(asset="A0", lot=lot0, open_bar=1, shut_bar=3)
        trade1 = Trade(asset="A0", lot=lot1, open_bar=1, shut_bar=3)
        tradeA = Trade(asset="A0", lot=lot0 + lot1, open_bar=1, shut_bar=3)
        result0 = trade0.series_exposure(self.universe_hand, net=net)
        result1 = trade1.series_exposure(self.universe_hand, net=net)
        resultA = tradeA.series_exposure(self.universe_hand, net=net)
        assert np.allclose(result0 + result1, resultA)

    @pytest.mark.parametrize("a", [-2.0, -1.0, 0.0, 1.0, 2.0])
    @pytest.mark.parametrize("net", [True, False])
    @pytest.mark.parametrize("seed", range(1))
    def test_linearity_mul(self, a, net, seed):
        universe = make_randomwalk(seed=seed)
        trade0 = RandomTrader(n_trades=1, seed=seed).run(universe).trades[0]
        tradeA = a * trade0
        result0 = trade0.series_exposure(universe, net=net)
        resultA = tradeA.series_exposure(universe, net=net)
        if net:
            assert np.allclose(a * result0, resultA)
        else:
            assert np.allclose(abs(a) * result0, resultA)
Ejemplo n.º 4
0
 def test_result_zero_1(self, net, n_bars):
     universe = Universe(
         pd.DataFrame({
             "A0": np.linspace(0.0, 1.0, n_bars),
         }))
     strategy = DeterminedTrader([Trade("A0", lot=0.0)]).run(universe)
     result = self.MetricClass(net=net).result(strategy)
     expected = np.zeros(n_bars)
     assert np.allclose(result, expected)
Ejemplo n.º 5
0
 def test_result_zero_0(self, net, n_bars):
     universe = Universe(
         pd.DataFrame({
             "A0": np.zeros(n_bars, dtype=float),
         }))
     strategy = DeterminedTrader([Trade("A0")]).run(universe)
     result = self.MetricClass(net=net).result(strategy)
     expected = np.zeros(n_bars)
     assert np.allclose(result, expected)
Ejemplo n.º 6
0
class TestNOrders:
    """
    Test `Strategy.n_orders`.
    """

    universe = Universe(pd.DataFrame({f"A{i}": range(10) for i in range(4)}))

    def test_value(self):
        strategy = SampleStrategy().run(self.universe)
        assert strategy.n_orders == 4
Ejemplo n.º 7
0
 def test_result_zero(self, rate, init_wealth, n_bars):
     universe = Universe(
         pd.DataFrame({
             "A0": np.ones(n_bars, dtype=float),
         }))
     strategy = DeterminedTrader([Trade("A0")]).run(universe,
                                                    budget=init_wealth)
     result = self.MetricClass(rate=rate).result(strategy)
     expected = 0
     assert np.allclose(result, expected)
Ejemplo n.º 8
0
class TestIsRun:
    """
    Test `Strategy.is_run`.
    """

    universe = Universe(pd.DataFrame({f"A{i}": range(10) for i in range(4)}))

    def test_value(self):
        strategy = SampleStrategy()
        assert strategy.is_run == False
        strategy.run(self.universe)
        assert strategy.is_run == True
Ejemplo n.º 9
0
class TestArrayExposure:
    """
    Test `Trade.array_exposure()`.
    """

    universe_hand = Universe(
        pd.DataFrame(
            {"A0": [3, 1, 4, 1, 5, 9, 2], "A1": [2, 7, 1, 8, 2, 8, 1],},
            index=range(7),
            dtype=float,
        )
    )

    trade0 = Trade(asset=["A0", "A1"], lot=[2, -3], open_bar=1, shut_bar=3)
    trade1 = Trade(asset=["A1", "A0"], lot=[-3, 2], open_bar=1, shut_bar=3)
    expected0 = [[0, 0], [2, -21], [8, -3], [2, -24], [0, 0], [0, 0], [0, 0]]
    expected1 = [[0, 0], [-21, 2], [-3, 8], [-24, 2], [0, 0], [0, 0], [0, 0]]

    @pytest.mark.parametrize(
        "trade, expected", [(trade0, expected0), (trade1, expected1)],
    )
    def test_hand(self, trade, expected):
        result = trade.array_exposure(universe=self.universe_hand)
        assert np.allclose(result, expected)

    def test_value_zero(self):
        trade = Trade(asset=["A0", "A1"], lot=[0, 0], open_bar=1, shut_bar=3)
        result = trade.array_exposure(self.universe_hand)
        expected = np.zeros((self.universe_hand.n_bars, 2))
        assert np.allclose(result, expected)

    @pytest.mark.parametrize("seed", range(1))
    def test_linearity_add(self, seed):
        np.random.seed(seed)
        lot0, lot1 = np.random.random(2)
        trade0 = Trade(asset="A0", lot=lot0, open_bar=1, shut_bar=3)
        trade1 = Trade(asset="A0", lot=lot1, open_bar=1, shut_bar=3)
        tradeA = Trade(asset="A0", lot=lot0 + lot1, open_bar=1, shut_bar=3)
        result0 = trade0.array_exposure(self.universe_hand)
        result1 = trade1.array_exposure(self.universe_hand)
        resultA = tradeA.array_exposure(self.universe_hand)
        assert np.allclose(result0 + result1, resultA)

    @pytest.mark.parametrize("a", [-2.0, -1.0, 0.0, 1.0, 2.0])
    @pytest.mark.parametrize("seed", range(1))
    def test_linearity_mul(self, a, seed):
        universe = make_randomwalk(seed=seed)
        trade0 = RandomTrader(n_trades=1, seed=seed).run(universe).trades[0]
        tradeA = a * trade0
        result0 = trade0.array_exposure(universe)
        resultA = tradeA.array_exposure(universe)
        assert np.allclose(a * result0, resultA)
Ejemplo n.º 10
0
class TestExposure:
    """
    Test `Exposure`.
    """

    MetricClass = Exposure

    universe_hand = Universe(
        pd.DataFrame({
            "A0": [3, 1, 4, 1, 5, 9, 2],
            "A1": [2, 7, 1, 8, 1, 8, 1],
        }))

    @pytest.mark.parametrize("net", [True, False])
    @pytest.mark.parametrize("n_bars", [100])
    def test_result_zero_0(self, net, n_bars):
        universe = Universe(
            pd.DataFrame({
                "A0": np.zeros(n_bars, dtype=float),
            }))
        strategy = DeterminedTrader([Trade("A0")]).run(universe)
        result = self.MetricClass(net=net).result(strategy)
        expected = np.zeros(n_bars)
        assert np.allclose(result, expected)

    @pytest.mark.parametrize("net", [True, False])
    @pytest.mark.parametrize("n_bars", [100])
    def test_result_zero_1(self, net, n_bars):
        universe = Universe(
            pd.DataFrame({
                "A0": np.linspace(0.0, 1.0, n_bars),
            }))
        strategy = DeterminedTrader([Trade("A0", lot=0.0)]).run(universe)
        result = self.MetricClass(net=net).result(strategy)
        expected = np.zeros(n_bars)
        assert np.allclose(result, expected)

    @pytest.mark.parametrize("net", [True, False])
    def test_hand(self, net):
        universe = self.universe_hand
        trade0 = Trade("A0", lot=2.0, open_bar=1, shut_bar=5)
        trade1 = Trade("A1", lot=-3.0, open_bar=2, shut_bar=4)
        strategy = DeterminedTrader([trade0, trade1]).run(universe)
        result = Exposure(net=net).result(strategy)
        if net:
            # 0 2  8   2 10 18 0
            # 0 0 -3 -24 -3  0 0
            expected = [0, 2, 5, -22, 7, 18, 0]
        else:
            expected = [0, 2, 11, 26, 13, 18, 0]

        assert np.allclose(result, expected)
Ejemplo n.º 11
0
    def test(self):
        universe = Universe(
            pd.DataFrame({
                "A": [1, 2, 3],
                "B": [2, 3, 4],
                "C": [3, 4, 5]
            }))
        strategy = BuyAndHold({"A": 0.5, "B": 0.5}).run(universe)

        assert len(strategy.trades) == 1
        assert (strategy.trades[0].asset == ["A", "B"]).all()
        assert (strategy.trades[0].lot == [0.5 / 1, 0.5 / 2]).all()
        assert strategy.trades[0].open_bar == 0
        assert strategy.trades[0].close_bar == 2
Ejemplo n.º 12
0
def fetch_usstocks(
    begin_date="2000-01-01",
    end_date="2019-12-31",
    n_assets=10,
    column="Adj Close",
    verbose=True,
):
    """
    Return Universe of US stocks.

    Parameters
    ----------
    - begin_date : str
    - end_date : str
    - n_assets : int

    Returns
    -------
    universe : Universe
    """
    begin_date = pd.Timestamp(begin_date)
    end_date = pd.Timestamp(end_date)

    with open(module_path / "usstocks.txt") as f:
        tickers = [ticker.strip() for ticker in f.readlines()]

    if n_assets > len(tickers):
        raise ValueError("n_assets should be <=", len(tickers))

    prices = pd.DataFrame({
        ticker: fill_and_cut(
            DataReader(
                name=ticker,
                data_source="yahoo",
                start=begin_date - pd.Timedelta(days=10),
                end=end_date,
            )[column],
            begin_date=begin_date,
        )
        for ticker in tickers[:n_assets]
    })

    return Universe(prices)
Ejemplo n.º 13
0
def make_randomwalk(
    n_bars=1000,
    n_assets=10,
    volatility=0.01,
    name="RandomWalk",
    bars=None,
    assets=None,
    seed=None,
):
    """
    Return Universe whose prices are random-walks.
    Daily returns follow log-normal distribution.

    Parameters
    ----------
    - n_bars : int, default 1000
    - n_assets : int, default 10
    - volatility : float, default 0.01
    - name : str, default='RandomWalk'
    - bars
    - assets
    - seed : int

    Returns
    -------
    Universe
    """
    data = np.random.lognormal(sigma=volatility,
                               size=(n_bars, n_assets)).cumprod(axis=0)
    data /= data[0, :]

    bars = bars or list(range(n_bars))
    assets = assets or [str(i) for i in range(n_assets)]

    prices = pd.DataFrame(data, index=bars, columns=assets)

    return Universe(prices, name=name)
Ejemplo n.º 14
0
import pytest

import numpy as np
import pandas as pd

from epymetheus import Universe

universe = Universe(prices=pd.DataFrame(
    {
        "Asset0": [0, 1, 2, 3],
        "Asset1": [0, 1, 2, 3],
        "Asset2": [0, 1, 2, 3],
    },
    index=["Bar0", "Bar1", "Bar2", "Bar3"],
))

params_universe = [universe]

# --------------------------------------------------------------------------------


@pytest.mark.parametrize("universe", params_universe)
def test_bars(universe):
    assert np.array_equal(universe.bars, ["Bar0", "Bar1", "Bar2", "Bar3"])


@pytest.mark.parametrize("universe", params_universe)
def test_assets(universe):
    assert np.array_equal(universe.assets, ["Asset0", "Asset1", "Asset2"])