Ejemplo n.º 1
0
new_faces = []
for video, framelist, facelist in zip(videos, frames, faces):
    frame_objs = Frame.objects.filter(video_id=video.id).filter(
        number__in=framelist).order_by('number')

    # Annotate frame objects with shot metadata
    frame_objs_with_metadata = []
    shots = Shot.objects.filter(video_id=video.id).order_by('min_frame').all()
    shot_iter = iter(shots)
    cur_shot = next(shot_iter)
    for frame in frame_objs:
        while frame.number > cur_shot.max_frame:
            cur_shot = next(shot_iter)
        frame_objs_with_metadata.append((frame, cur_shot))

    for frame_with_shot, bboxlist in zip(frame_objs_with_metadata,
                                         facelist.load()):
        for bbox in bboxlist:
            new_faces.append(
                Face(frame=frame_with_shot[0],
                     shot=frame_with_shot[1],
                     bbox_x1=bbox.x1,
                     bbox_x2=bbox.x2,
                     bbox_y1=bbox.y1,
                     bbox_y2=bbox.y2,
                     probability=bbox.score,
                     labeler=LABELER))
Face.objects.bulk_create(new_faces)

Notifier().notify('Done with face detection')
Ejemplo n.º 2
0
video_ids = sorted(
    list(all_videos.difference(labeled_videos).difference(bad_movie_ids)))

videos = Video.objects.filter(id__in=video_ids).order_by('id')

cfg = cluster_config(num_workers=100, worker=worker_config('n1-standard-32'))
with make_cluster(cfg, no_delete=True) as db_wrapper:
    db = db_wrapper.db
    #if True:
    #    db_wrapper = ScannerWrapper.create()
    #    db = db_wrapper.db

    histograms = st.histograms.compute_flow_histograms(
        db,
        videos=[video.for_scannertools() for video in list(videos)],
        run_opts={
            'work_packet_size': 4,
            'pipeline_instances_per_node': 2,
            'io_packet_size': 2496,
            'checkpoint_frequency': 1,
            'tasks_in_queue_per_pu': 2
        })

    # Tag this video as being labeled
    new_videotags = [
        VideoTag(video=video, tag=LABELED_TAG) for video in videos
    ]
    VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with flow histograms')
Ejemplo n.º 3
0
from scannertools import shot_detection, kube
from esper.scannerutil import ScannerWrapper, ScannerSQLTable
from esper.prelude import Timer, Notifier, now, pcache, log
from query.models import Video
from esper.kube import make_cluster
from threading import Thread, Condition
from attr import attrs, attrib
from pprint import pprint
from storehouse import StorehouseException
import traceback
import subprocess as sp
import pandas as pd
from time import strftime

notifier = Notifier()


@attrs(frozen=True)
class ScannerJobConfig:
    io_packet_size = attrib(type=int)
    work_packet_size = attrib(type=int)
    batch = attrib(type=int, default=1)
    pipelines_per_worker = attrib(type=int, default=-1)


class TestFailure(Exception):
    pass


def bench(name, args, run_pipeline, configs, force=False, no_delete=False):
Ejemplo n.º 4
0
        # from esper.scannerutil import ScannerWrapper
        # if True:
        #     db_wrapper = ScannerWrapper.create()

        db = db_wrapper.db

        job_config = ScannerJobConfig(io_packet_size=10000,
                                      work_packet_size=400,
                                      batch=400)
        hists = run_pipeline(db,
                             videos,
                             batch=job_config.batch,
                             run_opts={
                                 'io_packet_size': job_config.io_packet_size,
                                 'work_packet_size':
                                 job_config.work_packet_size,
                             })
        print('hists', len(hists))

        hists, videos = unzip([(h, v) for (h, v) in zip(hists, videos)
                               if v.num_frames < 800000])
        boundaries = compute_shot_boundaries(
            db,
            videos=[v.for_scannertools() for v in videos],
            db_videos=videos,
            video_ids=[v.id for v in videos],
            histograms=hists)
        # print(len([v for (v, b) in zip(videos, boundaries) if b is None]))

Notifier().notify('done')
Ejemplo n.º 5
0
                            labeler=LABELER,
                            frame=frame)
            new_poses.append(new_pose)
        if pose_detected:
            new_frame_tags.append(
                Frame.tags.through(frame_id=frame.pk, tag_id=LABELED_TAG.pk))
    Pose.objects.bulk_create(new_poses, batch_size=10000)
    Frame.tags.through.objects.bulk_create(new_frame_tags, batch_size=10000)
print("{} pose objects created, {} frame tagged".format(
    len(new_poses), len(new_frame_tags)))

# print("Tagging all the frames as being labeled")
# for video, framelist in tqdm(zip(videos, frames), total=len(videos)):
#     frame_objs = Frame.objects.filter(video_id=video.id, number__in=framelist)
#     for frame in frame_objs:
#         if (video.id, frame.number) in frames_in_db_already:
#             continue
#         new_frame_tags.append(
#             Frame.tags.through(frame_id=frame.pk, tag_id=LABELED_TAG.pk))

print("Tagging this video as being labeled")
videos_tagged_already = set(
    [vtag.video_id for vtag in VideoTag.objects.filter(tag=LABELED_TAG).all()])
new_videotags = [
    VideoTag(video=video, tag=LABELED_TAG) for video in videos
    if video.id not in videos_tagged_already
]
VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with pose detection')
Ejemplo n.º 6
0
                ))
        FaceGender.objects.bulk_create(new_facegenders, batch_size=100000)

         Tag all the frames as being labeled
        new_frame_tags = []
        frame_objs = Frame.objects.filter(video_id=video.id, number__in=framelist)
        for frame in frame_objs:
            if (video.id, frame.number) in frames_in_db_already:
                continue
            new_frame_tags.append(
                    Frame.tags.through(frame_id=frame.pk, tag_id=LABELED_TAG.pk))
        Frame.tags.through.objects.bulk_create(new_frame_tags, batch_size=100000)

    # Get the videos that already have the tag
    videos_tagged_already = set([
        vtag.video_id
        for vtag in VideoTag.objects.filter(tag=LABELED_TAG).all()
    ])

    # Tag this video as being labeled
    new_videotags = [
        VideoTag(video=video, tag=LABELED_TAG)
        for video in videos
        if video.id not in videos_tagged_already
    ]
    VideoTag.objects.bulk_create(new_videotags)

    print("Finished putting everything in the database")

Notifier().notify('Done with gender detection')
Ejemplo n.º 7
0
    #                if (abs(obj.bbox_x1 - bbox.x1) < .000001 and
    #                    abs(obj.bbox_x2 - bbox.x2) < .000001 and
    #                    abs(obj.bbox_y1 - bbox.y1) < .000001 and
    #                    abs(obj.bbox_y2 - bbox.y2) < .000001 and
    #                    abs(obj.probability - bbox.score) < .000001):
    #                    face_obj = obj
    #                    break
    #            if face_obj is None:
    #                print("Couldn't find face {} in {}".format(bbox, face_objs))
    #            new_facelandmarks.append(FaceLandmarks(
    #                face=face_obj,
    #                landmarks=landmarks.tobytes(),
    #                labeler=LABELER
    #            ))
    #FaceLandmarks.objects.bulk_create(new_facelandmarks)

    ## Tag all the frames as being labeled
    #new_frame_tags = []
    #for video, framelist in zip(videos, frames):
    #    frame_objs = Frame.objects.filter(video_id=video.id).filter(number__in=framelist)
    #    for frame in frame_objs:
    #        new_frame_tags.append(
    #                Frame.tags.through(frame_id=frame.pk, tag_id=LABELED_TAG.pk))
    #Frame.tags.through.objects.bulk_create(new_frame_tags)

    ## Tag this video as being labeled
    #new_videotags = [VideoTag(video=video, tag=LABELED_TAG) for video in videos]
    #VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with face landmark detection')
Ejemplo n.º 8
0
                bin_size = 255.0 / len(saturation_channel)
                avg_saturation = np.sum([
                    count * j * bin_size
                    for j, count in enumerate(saturation_channel)
                ]) / num_pixels

                frame_obj = Frame.objects.get(video_id=video.id, number=i)
                frame_obj.saturation = avg_saturation
                #new_frame_tags.append(
                #    Frame.tags.through(frame_id=frame_obj.pk, tag_id=LABELED_TAG.pk))
                frames_to_update.append(frame_obj)
        with transaction.atomic():
            for frame in frames_to_update:
                frame.save()
            #Frame.tags.through.objects.bulk_create(new_frame_tags)

    # Get the videos that already have the tag
    videos_tagged_already = set([
        vtag.video_id
        for vtag in VideoTag.objects.filter(tag=LABELED_TAG).all()
    ])

    # Tag this video as being labeled
    new_videotags = [
        VideoTag(video=video, tag=LABELED_TAG) for video in videos
        if video.id not in videos_tagged_already
    ]
    VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with saturation computation')
Ejemplo n.º 9
0
        frame_objs = Frame.objects.filter(
            video_id=video.id, number__in=framelist).order_by('number')
        for (frame_obj, brightness_val) in zip(frame_objs,
                                               brightness_list.load()):
            if (video.id, frame_obj.number) in frames_in_db_already:
                continue
            new_frame_tags.append(
                Frame.tags.through(frame_id=frame_obj.pk,
                                   tag_id=LABELED_TAG.pk))
            frame_obj.brightness = brightness_val
            frames_to_update.append(frame_obj)
        with transaction.atomic():
            for frame in frames_to_update:
                frame.save()
            Frame.tags.through.objects.bulk_create(new_frame_tags)

    # Get the videos that already have the tag
    videos_tagged_already = set([
        vtag.video_id
        for vtag in VideoTag.objects.filter(tag=LABELED_TAG).all()
    ])

    # Tag this video as being labeled
    new_videotags = [
        VideoTag(video=video, tag=LABELED_TAG) for video in videos
        if video.id not in videos_tagged_already
    ]
    VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with brightness computation')
Ejemplo n.º 10
0
    db,
    videos=[video.for_scannertools() for video in videos],
    frames=frames,
    megabatch=1)

# Labeler for this pipeline
LABELER, _ = Labeler.objects.get_or_create(name='rmscontrast')
LABELED_TAG, _ = Tag.objects.get_or_create(name='rmscontrast:labeled')

# Tag all the frames as being labeled, and update frames with contrast val
new_frame_tags = []
frames_to_update = []
for video, framelist, contrast_list in zip(videos, frames, contrast):
    frame_objs = Frame.objects.filter(video_id=video.id,
                                      number__in=framelist).order_by('number')
    for (frame_obj, contrast_val) in zip(frame_objs, contrast_list.load()):
        new_frame_tags.append(
            Frame.tags.through(frame_id=frame_obj.pk, tag_id=LABELED_TAG.pk))
        frame_obj.contrast = contrast_val
        frames_to_update.append(frame_obj)
with transaction.atomic():
    for frame in frames_to_update:
        frame.save()
Frame.tags.through.objects.bulk_create(new_frame_tags)

# Tag this video as being labeled
new_videotags = [VideoTag(video=video, tag=LABELED_TAG) for video in videos]
VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with contrast computation')
Ejemplo n.º 11
0
video_ids = sorted(list(set(video_ids).difference(set(shot_video_ids))))

videos = Video.objects.filter(id__in=video_ids).order_by('id')

cfg = cluster_config(num_workers=100, worker=worker_config('n1-standard-32'))
with make_cluster(cfg, no_delete=True) as db_wrapper:
    db = db_wrapper.db
    #if True:
    #    db_wrapper = ScannerWrapper.create()
    #    db = db_wrapper.db

    hsv_histograms = st.histograms.compute_hsv_histograms(
        db,
        videos=[video.for_scannertools() for video in list(videos)],
        run_opts={
            'work_packet_size': 4,
            'io_packet_size': 2496,
            'checkpoint_frequency': 1,
            'tasks_in_queue_per_pu': 2,
            'pipeline_instances_per_node': 2
        })

    # Tag this video as being labeled
    new_videotags = [
        VideoTag(video=video, tag=LABELED_TAG) for video in videos
    ]
    VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with HSV histograms')
Ejemplo n.º 12
0
video_ids = sorted(
    list(all_videos.difference(labeled_videos).difference(bad_movie_ids)))

videos = Video.objects.filter(id__in=video_ids).order_by('id')

cfg = cluster_config(num_workers=100, worker=worker_config('n1-standard-32'))
with make_cluster(cfg, no_delete=True) as db_wrapper:
    db = db_wrapper.db
    #if True:
    #    db_wrapper = ScannerWrapper.create()
    #    db = db_wrapper.db

    histograms = st.histograms.compute_histograms(
        db,
        videos=[video.for_scannertools() for video in list(videos)],
        run_opts={
            'work_packet_size': 8,
            'io_packet_size': 2496,
            'checkpoint_frequency': 1,
            'tasks_in_queue_per_pu': 2,
            'pipeline_instances_per_node': 8
        })

    # Tag this video as being labeled
    new_videotags = [
        VideoTag(video=video, tag=LABELED_TAG) for video in videos
    ]
    VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with RGB histograms')
Ejemplo n.º 13
0
        FaceFeatures.objects.bulk_create(new_features, batch_size=10000)
    
        #new_frame_tags = []
        #frame_objs = Frame.objects.filter(video_id=video.id).filter(number__in=framelist)
        #for frame in frame_objs:
        #    if (video.id, frame.number) in frames_in_db_already:
        #        continue
        #    new_frame_tags.append(
        #            Frame.tags.through(frame_id=frame.pk, tag_id=LABELED_TAG.pk))
        #if len(new_frame_tags) == 0:
        #    continue
        #Frame.tags.through.objects.bulk_create(new_frame_tags, batch_size=10000)

    # Get the videos that already have the tag
    #videos_tagged_already = set([
    #    vtag.video_id
    #    for vtag in VideoTag.objects.filter(tag=LABELED_TAG).all()
    #])

    ## Tag this video as being labeled
    #new_videotags = [
    #    VideoTag(video=video, tag=LABELED_TAG)
    #    for video in videos
    #    if video.id not in videos_tagged_already
    #]
    #VideoTag.objects.bulk_create(new_videotags)

    print("Finished putting everything in the database")

Notifier().notify('Done with face embeddings')
Ejemplo n.º 14
0
import scannerpy
import scannertools as st
import os
from django.db.models import Q
from query.models import Video
import numpy as np
from esper.prelude import Notifier

# Load all Star Wars and Harry Potter films
videos = Video.objects.filter(name__contains='godfather')
db = scannerpy.Database()

# Calculate at 2 fps
frames = [
    list(range(0, video.num_frames, int(round(video.fps) / 2)))
    for video in videos
]

# Calculate motion flow
flow = st.optical_flow.compute_flow(
    db,
    videos=[video.for_scannertools() for video in videos],
    frames=frames,
    megabatch=1)

Notifier().notify('Done computing motion flow!')
Ejemplo n.º 15
0
    db,
    videos=[video.for_scannertools() for video in videos],
    frames=frames,
    megabatch=1)

# Labeler for this pipeline
LABELER, _ = Labeler.objects.get_or_create(name='laplacianvariance')
LABELED_TAG, _ = Tag.objects.get_or_create(name='laplacianvariance:labeled')

# Tag all the frames as being labeled, and update frames with sharpness val
new_frame_tags = []
frames_to_update = []
for video, framelist, sharpness_list in zip(videos, frames, sharpness):
    frame_objs = Frame.objects.filter(video_id=video.id,
                                      number__in=framelist).order_by('number')
    for (frame_obj, sharpness_val) in zip(frame_objs, sharpness_list.load()):
        new_frame_tags.append(
            Frame.tags.through(frame_id=frame_obj.pk, tag_id=LABELED_TAG.pk))
        frame_obj.sharpness = sharpness_val
        frames_to_update.append(frame_obj)
with transaction.atomic():
    for frame in frames_to_update:
        frame.save()
Frame.tags.through.objects.bulk_create(new_frame_tags)

# Tag this video as being labeled
new_videotags = [VideoTag(video=video, tag=LABELED_TAG) for video in videos]
VideoTag.objects.bulk_create(new_videotags)

Notifier().notify('Done with sharpness computation')