Ejemplo n.º 1
0
def config_file(tmp_path: Path):
    # Write default configuration file
    EnhancementTask.main(cmd=[
        "--dry_run",
        "true",
        "--output_dir",
        str(tmp_path),
    ])
    return tmp_path / "config.yaml"
Ejemplo n.º 2
0
def main(cmd=None):
    r"""Enhancemnet frontend training.

    Example:

        % python enh_train.py asr --print_config --optim adadelta \
                > conf/train_enh.yaml
        % python enh_train.py --config conf/train_enh.yaml
    """
    EnhancementTask.main(cmd=cmd)
Ejemplo n.º 3
0
    def __init__(
        self,
        enh_train_config: Union[Path, str],
        enh_model_file: Union[Path, str] = None,
        segment_size: Optional[float] = None,
        hop_size: Optional[float] = None,
        normalize_segment_scale: bool = False,
        show_progressbar: bool = False,
        ref_channel: Optional[int] = None,
        normalize_output_wav: bool = False,
        device: str = "cpu",
        dtype: str = "float32",
    ):
        assert check_argument_types()

        # 1. Build Enh model
        enh_model, enh_train_args = EnhancementTask.build_model_from_file(
            enh_train_config, enh_model_file, device
        )
        enh_model.to(dtype=getattr(torch, dtype)).eval()

        self.device = device
        self.dtype = dtype
        self.enh_train_args = enh_train_args
        self.enh_model = enh_model

        # only used when processing long speech, i.e.
        # segment_size is not None and hop_size is not None
        self.segment_size = segment_size
        self.hop_size = hop_size
        self.normalize_segment_scale = normalize_segment_scale
        self.normalize_output_wav = normalize_output_wav
        self.show_progressbar = show_progressbar

        self.num_spk = enh_model.num_spk
        task = "enhancement" if self.num_spk == 1 else "separation"

        # reference channel for processing multi-channel speech
        if ref_channel is not None:
            logging.info(
                "Overwrite enh_model.separator.ref_channel with {}".format(ref_channel)
            )
            enh_model.separator.ref_channel = ref_channel
            self.ref_channel = ref_channel
        else:
            self.ref_channel = enh_model.ref_channel

        self.segmenting = segment_size is not None and hop_size is not None
        if self.segmenting:
            logging.info("Perform segment-wise speech %s" % task)
            logging.info(
                "Segment length = {} sec, hop length = {} sec".format(
                    segment_size, hop_size
                )
            )
        else:
            logging.info("Perform direct speech %s on the input" % task)
Ejemplo n.º 4
0
def config_file(tmp_path: Path):
    # Write default configuration file
    EnhancementTask.main(
        cmd=[
            "--dry_run",
            "true",
            "--output_dir",
            str(tmp_path / "enh"),
        ]
    )

    with open(tmp_path / "enh" / "config.yaml", "r") as f:
        args = yaml.safe_load(f)

    if args["encoder"] == "stft" and len(args["encoder_conf"]) == 0:
        args["encoder_conf"] = get_default_kwargs(STFTEncoder)

    with open(tmp_path / "enh" / "config.yaml", "w") as f:
        yaml_no_alias_safe_dump(args, f, indent=4, sort_keys=False)

    return tmp_path / "enh" / "config.yaml"
Ejemplo n.º 5
0
def inference(
    output_dir: str,
    batch_size: int,
    dtype: str,
    fs: int,
    ngpu: int,
    seed: int,
    num_workers: int,
    log_level: Union[int, str],
    data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
    key_file: Optional[str],
    train_config: Optional[str],
    model_file: Optional[str],
    model_tag: Optional[str],
    inference_config: Optional[str],
    allow_variable_data_keys: bool,
    segment_size: Optional[float],
    hop_size: Optional[float],
    normalize_segment_scale: bool,
    show_progressbar: bool,
    ref_channel: Optional[int],
    normalize_output_wav: bool,
    enh_s2t_task: bool,
):
    assert check_argument_types()
    if batch_size > 1:
        raise NotImplementedError("batch decoding is not implemented")
    if ngpu > 1:
        raise NotImplementedError("only single GPU decoding is supported")

    logging.basicConfig(
        level=log_level,
        format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
    )

    if ngpu >= 1:
        device = "cuda"
    else:
        device = "cpu"

    # 1. Set random-seed
    set_all_random_seed(seed)

    # 2. Build separate_speech
    separate_speech_kwargs = dict(
        train_config=train_config,
        model_file=model_file,
        inference_config=inference_config,
        segment_size=segment_size,
        hop_size=hop_size,
        normalize_segment_scale=normalize_segment_scale,
        show_progressbar=show_progressbar,
        ref_channel=ref_channel,
        normalize_output_wav=normalize_output_wav,
        device=device,
        dtype=dtype,
        enh_s2t_task=enh_s2t_task,
    )
    separate_speech = SeparateSpeech.from_pretrained(
        model_tag=model_tag,
        **separate_speech_kwargs,
    )

    # 3. Build data-iterator
    loader = EnhancementTask.build_streaming_iterator(
        data_path_and_name_and_type,
        dtype=dtype,
        batch_size=batch_size,
        key_file=key_file,
        num_workers=num_workers,
        preprocess_fn=EnhancementTask.build_preprocess_fn(
            separate_speech.enh_train_args, False),
        collate_fn=EnhancementTask.build_collate_fn(
            separate_speech.enh_train_args, False),
        allow_variable_data_keys=allow_variable_data_keys,
        inference=True,
    )

    # 4. Start for-loop
    output_dir = Path(output_dir).expanduser().resolve()
    writers = []
    for i in range(separate_speech.num_spk):
        writers.append(
            SoundScpWriter(f"{output_dir}/wavs/{i + 1}",
                           f"{output_dir}/spk{i + 1}.scp"))

    for i, (keys, batch) in enumerate(loader):
        logging.info(f"[{i}] Enhancing {keys}")
        assert isinstance(batch, dict), type(batch)
        assert all(isinstance(s, str) for s in keys), keys
        _bs = len(next(iter(batch.values())))
        assert len(keys) == _bs, f"{len(keys)} != {_bs}"
        batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}

        waves = separate_speech(**batch)
        for (spk, w) in enumerate(waves):
            for b in range(batch_size):
                writers[spk][keys[b]] = fs, w[b]

    for writer in writers:
        writer.close()
Ejemplo n.º 6
0
def get_parser():
    parser = EnhancementTask.get_parser()
    return parser
Ejemplo n.º 7
0
def inference(
    output_dir: str,
    batch_size: int,
    dtype: str,
    fs: int,
    ngpu: int,
    seed: int,
    num_workers: int,
    log_level: Union[int, str],
    data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
    key_file: Optional[str],
    enh_train_config: str,
    enh_model_file: str,
    allow_variable_data_keys: bool,
    normalize_output_wav: bool,
):
    assert check_argument_types()
    if batch_size > 1:
        raise NotImplementedError("batch decoding is not implemented")
    if ngpu > 1:
        raise NotImplementedError("only single GPU decoding is supported")

    logging.basicConfig(
        level=log_level,
        format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
    )

    if ngpu >= 1:
        device = "cuda"
    else:
        device = "cpu"

    # 1. Set random-seed
    set_all_random_seed(seed)

    # 2. Build Enh model
    enh_model, enh_train_args = EnhancementTask.build_model_from_file(
        enh_train_config, enh_model_file, device)
    enh_model.eval()

    num_spk = enh_model.num_spk

    # 3. Build data-iterator
    loader = EnhancementTask.build_streaming_iterator(
        data_path_and_name_and_type,
        dtype=dtype,
        batch_size=batch_size,
        key_file=key_file,
        num_workers=num_workers,
        preprocess_fn=EnhancementTask.build_preprocess_fn(
            enh_train_args, False),
        collate_fn=EnhancementTask.build_collate_fn(enh_train_args),
        allow_variable_data_keys=allow_variable_data_keys,
        inference=True,
    )

    writers = []
    for i in range(num_spk):
        writers.append(
            SoundScpWriter(f"{output_dir}/wavs/{i + 1}",
                           f"{output_dir}/spk{i + 1}.scp"))

    for keys, batch in loader:
        assert isinstance(batch, dict), type(batch)
        assert all(isinstance(s, str) for s in keys), keys
        _bs = len(next(iter(batch.values())))
        assert len(keys) == _bs, f"{len(keys)} != {_bs}"

        with torch.no_grad():
            # a. To device
            batch = to_device(batch, device)
            # b. Forward Enhancement Frontend
            waves, _, _ = enh_model.enh_model.forward_rawwav(
                batch["speech_mix"], batch["speech_mix_lengths"])
            assert len(waves[0]) == batch_size, len(waves[0])

        # FIXME(Chenda): will be incorrect when
        #  batch size is not 1 or multi-channel case
        if normalize_output_wav:
            waves = [
                (w / abs(w).max(dim=1, keepdim=True)[0] * 0.9).T.cpu().numpy()
                for w in waves
            ]  # list[(sample,batch)]
        else:
            waves = [w.T.cpu().numpy() for w in waves]
        for (i, w) in enumerate(waves):
            writers[i][keys[0]] = fs, w

    for writer in writers:
        writer.close()
Ejemplo n.º 8
0
def test_add_arguments_help():
    parser = EnhancementTask.get_parser()
    with pytest.raises(SystemExit):
        parser.parse_args(["--help"])
Ejemplo n.º 9
0
def test_add_arguments():
    EnhancementTask.get_parser()
Ejemplo n.º 10
0
def test_print_config_and_load_it(tmp_path):
    config_file = tmp_path / "config.yaml"
    with config_file.open("w") as f:
        EnhancementTask.print_config(f)
    parser = EnhancementTask.get_parser()
    parser.parse_args(["--config", str(config_file)])
Ejemplo n.º 11
0
def test_main_with_no_args():
    with pytest.raises(SystemExit):
        EnhancementTask.main(cmd=[])
Ejemplo n.º 12
0
def test_main_print_config():
    with pytest.raises(SystemExit):
        EnhancementTask.main(cmd=["--print_config"])
Ejemplo n.º 13
0
def test_main_help():
    with pytest.raises(SystemExit):
        EnhancementTask.main(cmd=["--help"])