Ejemplo n.º 1
0
    def test_msd_global_temp(self):
        """Tests diffusion via MSD for global gamma and temperature"""

        gamma = 9.4
        kT = 0.37
        dt = 0.5

        system = self.system
        system.part.clear()
        p = system.part.add(pos=(0, 0, 0), id=0)
        system.time_step = dt
        system.thermostat.set_brownian(kT=kT, gamma=gamma, seed=42)
        system.cell_system.skin = 0.4

        pos_obs = ParticlePositions(ids=(p.id, ))

        c_pos = Correlator(obs1=pos_obs,
                           tau_lin=16,
                           tau_max=100.,
                           delta_N=10,
                           corr_operation="square_distance_componentwise",
                           compress1="discard1")
        system.auto_update_accumulators.add(c_pos)

        system.integrator.run(500000)

        c_pos.finalize()

        # Check MSD
        msd = c_pos.result()
        system.auto_update_accumulators.clear()

        def expected_msd(x):
            return 2. * kT / gamma * x

        for i in range(2, 6):
            np.testing.assert_allclose(msd[i, 2:5],
                                       expected_msd(msd[i, 0]),
                                       rtol=0.02)
Ejemplo n.º 2
0
                   compress1="discard1")
c_vel = Correlator(obs1=vel_obs,
                   tau_lin=16,
                   tau_max=20.,
                   delta_N=1,
                   corr_operation="scalar_product",
                   compress1="discard1")
system.auto_update_accumulators.add(c_pos)
system.auto_update_accumulators.add(c_vel)

system.integrator.run(1000000)

c_pos.finalize()
c_vel.finalize()

np.savetxt("msd.dat", c_pos.result())
np.savetxt("vacf.dat", c_vel.result())

# Integral of vacf via Green-Kubo
# D= 1/3 int_0^infty <v(t_0)v(t_0+t)> dt

vacf = c_vel.result()
# Integrate with trapezoidal rule
I = np.trapz(vacf[:, 2], vacf[:, 0])
ratio = 1. / 3. * I / (kT / gamma)
print("Ratio of measured and expected diffusion coefficients from Green-Kubo:",
      ratio)

# Check MSD
msd = c_pos.result()
Ejemplo n.º 3
0
    # correlator
    ang_id = ParticleAngularVelocities(ids=[0])
    avacf = Correlator(obs1=ang_id,
                       corr_operation="scalar_product",
                       delta_N=1,
                       tau_max=tmax,
                       tau_lin=16)
    system.auto_update_accumulators.add(avacf)

    # Integrate 5,000,000 steps. This can be done in one go as well.
    for i in range(SAMP_STEPS):
        if (i + 1) % 100 == 0:
            print('\rrun %i: %.0f%%' % (run + 1, (i + 1) * 100. / SAMP_STEPS),
                  end='',
                  flush=True)
        system.integrator.run(SAMP_LENGTH)
    print()

    # Finalize the accumulators and write to disk
    system.auto_update_accumulators.remove(msd)
    msd.finalize()
    np.savetxt("{}/msd_{}_{}.dat".format(outdir, vel, run), msd.result())

    system.auto_update_accumulators.remove(vacf)
    vacf.finalize()
    np.savetxt("{}/vacf_{}_{}.dat".format(outdir, vel, run), vacf.result())

    system.auto_update_accumulators.remove(avacf)
    avacf.finalize()
    np.savetxt("{}/avacf_{}_{}.dat".format(outdir, vel, run), avacf.result())
Ejemplo n.º 4
0
def calc(var):

    # AVB: Create an output directory for this to store the output files
    outdir = "./Noelle/r01.5kBT4Ads/1000=3.2"
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Setup constant
    time_step = 0.01
    loops = 30
    step_per_loop = 100

    # AVB: the parameters (that I usually use)
    a = 0.05
    r0 = 2.0 * a
    kBT = 4.0e-6
    vwf_type = 0
    collagen_type = 1
    monomer_mass = 0.01

    box_l = 32.0
    #print("Shear velocity:")
    #shear_velocity = float(input())
    #vy = box_l*shear_velocity
    vy = var
    print(vy)
    v = [0, vy, 0]

    # System setup

    system = 0

    system = System(box_l=[box_l, box_l, box_l])
    system.set_random_state_PRNG()
    np.random.seed(seed=system.seed)
    system.cell_system.skin = 0.4

    mpc = 20  # The number of monomers has been set to be 20 as default
    # Change this value for further simulations

    # Fene interaction
    fene = interactions.FeneBond(k=0.04, d_r_max=0.3)
    system.bonded_inter.add(fene)

    # Setup polymer of part_id 0 with fene bond
    # AVB: Notice the mode, max_tries and shield parameters for pruned self-avoiding random walk algorithm
    polymer.create_polymer(N_P=1,
                           MPC=mpc,
                           bond=fene,
                           bond_length=r0,
                           start_pos=[29.8, 16.0, 16.0],
                           mode=2,
                           max_tries=100,
                           shield=0.6 * r0)

    # AVB: setting the type of particles and changing mass of each monomer to 0.01
    system.part[:].type = vwf_type
    system.part[:].mass = monomer_mass

    # AVB: I suggest to add Lennard-Jones interaction between the monomers
    # AVB: to reproduce hydrophobicity
    # AVB: parameters for the potential (amplitude and cut-off redius)
    amplVwfVwf = 4.0 * kBT  # sometimes we change this to 2.0*kBT
    rcutVwfVwf = 1.5 * r0
    # AVB: the potential
    system.non_bonded_inter[vwf_type, vwf_type].lennard_jones.set_params(
        epsilon=amplVwfVwf,
        sigma=r0 / 1.122,
        shift="auto",
        cutoff=rcutVwfVwf,
        min=r0 * 0.6)

    print("Warming up the polymer chain.")
    ## For longer chains (>100) an extensive
    ## warmup is neccessary ...
    system.time_step = 0.002
    system.thermostat.set_langevin(kT=4.0e-6, gamma=1.0)
    # AVB: Here the Langevin thermostat is needed, because we have not yet initialized the LB-fluid.
    # AVB: And somehow it is necessary so that the polymer adopts the equilibrium conformation of the globule.
    # AVB: you may skip this step

    for i in range(100):
        system.force_cap = float(i) + 1
        system.integrator.run(100)

    print("Warmup finished.")
    system.force_cap = 0
    system.integrator.run(100)
    system.time_step = time_step
    system.integrator.run(500)

    # AVB: the following command turns the Langevin thermostat on in line 49
    system.thermostat.turn_off()

    # AVB: This command sets the velocities of all particles to zero
    system.part[:].v = [0, 0, 0]

    # AVB: The density was too small here. I have set 1.0 for now.
    # AVB: It would be necessary to recalculate, but the density of the liquid should not affect the movements of the polymer (this is how our physical model works).
    lbf = espressomd.lb.LBFluid(agrid=1,
                                dens=1.0,
                                visc=1.0e2,
                                tau=time_step,
                                fric=0.01)
    system.actors.add(lbf)
    system.thermostat.set_lb(kT=4.0e-6)

    # Setup boundaries
    walls = [lbboundaries.LBBoundary() for k in range(2)]
    walls[0].set_params(shape=shapes.Wall(normal=[1, 0, 0], dist=1.5),
                        velocity=v)
    walls[1].set_params(shape=shapes.Wall(normal=[-1, 0, 0], dist=-30.5))

    for wall in walls:
        system.lbboundaries.add(wall)

    print("Warming up the system with LB fluid.")
    system.integrator.run(5000)
    print("LB fluid warming finished.")
    # AVB: after this you should have a completely collapsed polymer globule
    # AVB: If you want to watch the process of globule formation in Paraview, just change 5000 to 0 in line 100

    N = 25
    x_coord = np.array([30] * N)
    y_coord = np.arange(14, 24, 5 / N)
    z_coord = np.arange(14, 24, 5 / N)
    for i in range(N):
        for j in range(N):
            system.part.add(id=i * N + j + 100,
                            pos=np.array([x_coord[i], y_coord[j], z_coord[i]]),
                            v=np.array([0, 0, 0]),
                            type=i * N + j + 100)

    all_collagen = range(100, (N - 1) * N + (N - 1) + 100)
    system.comfixed.types = all_collagen

    for i in range(100, (N - 1) * N + (N - 1) + 100):
        system.non_bonded_inter[vwf_type,
                                i].lennard_jones.set_params(epsilon=amplVwfVwf,
                                                            sigma=r0 / 1.122,
                                                            shift="auto",
                                                            cutoff=rcutVwfVwf,
                                                            min=r0 * 0.6)

    # configure correlators
    com_pos = ComPosition(ids=(0, ))
    c = Correlator(obs1=com_pos,
                   tau_lin=16,
                   tau_max=loops * step_per_loop,
                   delta_N=1,
                   corr_operation="square_distance_componentwise",
                   compress1="discard1")
    system.auto_update_accumulators.add(c)

    print("Sampling started.")
    print("lenth after warmup")
    print(
        system.analysis.calc_re(chain_start=0,
                                number_of_chains=1,
                                chain_length=mpc - 1)[0])

    lengths = []

    ylengths = []

    for i in range(loops):
        system.integrator.run(step_per_loop)
        system.analysis.append()
        lengths.append(
            system.analysis.calc_re(chain_start=0,
                                    number_of_chains=1,
                                    chain_length=mpc - 1)[0])
        lbf.print_vtk_velocity(outdir + "/" + str(vy) + "%04i.vtk" % i)
        system.part.writevtk(outdir + "/" + str(vy) + "vwf_all%04i.vtk" % i,
                             types=all_collagen)
        system.part.writevtk(outdir + "/" + str(vy) + "vwf_poly%04i.vtk" % i,
                             types=[0])
        cor = list(system.part[:].pos)
        y = []
        for l in cor:
            y.append(l[1])
        ylengths.append(max(y) - min(y))

        sys.stdout.write("\rSampling: %05i" % i)
        sys.stdout.flush()

    walls[0].set_params(shape=shapes.Wall(normal=[1, 0, 0], dist=1.5))
    walls[1].set_params(shape=shapes.Wall(normal=[-1, 0, 0], dist=-30.5))

    for i in range(100):
        system.integrator.run(step_per_loop)
        lengths.append(
            system.analysis.calc_re(chain_start=0,
                                    number_of_chains=1,
                                    chain_length=mpc - 1)[0])

    system.part.writevtk(outdir + "/" + str(vy) +
                         "vwf_all[r0=2,kBT=4]intheEND.vtk")

    with open(outdir + "/lengths" + str(vy) + ".dat", "a") as datafile:
        datafile.write("\n".join(map(str, lengths)))

    with open(outdir + "/lengthsY" + str(vy) + ".dat", "a") as datafile:
        datafile.write("\n".join(map(str, ylengths)))

    mean_vy = [(vy * 10000) / 32, sum(ylengths) / len(ylengths)]

    print("mean_vy")
    print(mean_vy)

    with open(outdir + "/mean_vy" + "2kBT_2r0" + ".dat", "a") as datafile:
        datafile.write(" ".join(map(str, mean_vy)))

    c.finalize()
    corrdata = c.result()
    corr = zeros((corrdata.shape[0], 2))
    corr[:, 0] = corrdata[:, 0]
    corr[:, 1] = (corrdata[:, 2] + corrdata[:, 3] + corrdata[:, 4]) / 3

    savetxt(outdir + "/msd_nom" + str(mpc) + ".dat", corr)

    with open(outdir + "/rh_out.dat", "a") as datafile:
        rh = system.analysis.calc_rh(chain_start=0,
                                     number_of_chains=1,
                                     chain_length=mpc - 1)
        datafile.write(str(mpc) + "    " + str(rh[0]) + "\n")
Ejemplo n.º 5
0
                     tau_lin=16)
    system.auto_update_accumulators.add(msd)

## Exercise 3 ##
# Construct the auto-accumulators for the VACF and AVACF,
# using the example of the MSD

    # Initialize the velocity auto-correlation function (VACF) correlator

    ...

    # Initialize the angular velocity auto-correlation function (AVACF)
    # correlator

    ...

    # Integrate 5,000,000 steps. This can be done in one go as well.

    for i in range(sampsteps):
        system.integrator.run(samplength)

    # Finalize the accumulators and write to disk

    system.auto_update_accumulators.remove(msd)
    msd.finalize()
    np.savetxt("{}/msd_{}_{}.dat".format(outdir, vel, run), msd.result())

    ...

    ...
Ejemplo n.º 6
0
    pos_id = ParticlePositions(ids=[cent])
    msd = Correlator(obs1=pos_id,
                     corr_operation="square_distance_componentwise",
                     delta_N=1,
                     tau_max=tmax,
                     tau_lin=16)
    system.auto_update_accumulators.add(msd)

    ## Exercise 7a ##
    # Construct the auto-correlators for the AVACF, using the example
    # of the MSD.
...

    # Perform production

    # Integrate
    for k in range(prod_steps):
        print("Production {} of 5: {} of {}".format(cnt + 1, k, prod_steps))
        system.integrator.run(prod_length)

    # Finalize the MSD and export
    system.auto_update_accumulators.remove(msd)
    msd.finalize()
    np.savetxt("{}/msd_{}.dat".format(outdir, cnt), msd.result())

    ## Exercise 7b ##
    # Finalize the angular velocity auto-correlation function (AVACF)
    # correlator and write the result to a file.
...
Ejemplo n.º 7
0
    # Integrate 5,000,000 steps. This can be done in one go as well.
    for i in range(SAMP_STEPS):
        if (i + 1) % 100 == 0:
            print('\rrun %i: %.0f%%' % (run + 1, (i + 1) * 100. / SAMP_STEPS),
                  end='',
                  flush=True)
        system.integrator.run(SAMP_LENGTH)
    print()

    # Finalize the accumulators and write to disk
    system.auto_update_accumulators.remove(msd)
    msd.finalize()
    np.savetxt(
        "{}/msd_{}_{}.dat".format(outdir, vel, run),
        np.column_stack(
            (msd.lag_times(), msd.sample_sizes(), msd.result().reshape([-1,
                                                                        3]))))

    system.auto_update_accumulators.remove(vacf)
    vacf.finalize()
    np.savetxt(
        "{}/vacf_{}_{}.dat".format(outdir, vel, run),
        np.column_stack((vacf.lag_times(), vacf.sample_sizes(),
                         vacf.result().reshape([-1, 1]))))

    system.auto_update_accumulators.remove(avacf)
    avacf.finalize()
    np.savetxt(
        "{}/avacf_{}_{}.dat".format(outdir, vel, run),
        np.column_stack((avacf.lag_times(), avacf.sample_sizes(),
                         avacf.result().reshape([-1, 1]))))
Ejemplo n.º 8
0
    kin_stress.write(str(stress['kinetic'][0, 1]) + "\n")
    kin_stress.flush()

    temp.write(str(energy['kinetic']) + "\n")
    temp.flush()

    ener.write(str(energy['total']) + "\n")
    ener.flush()

    print(i, flush=True)
    system.integrator.run(iterations)

# Finalizing and results of correlators
c_dpd.finalize()
c_old.finalize()

dpd_stress_acf = c_dpd.result()
old_stress_acf = c_old.result()

#Saving the results of correlators in numpy-files
np.save('dpd_sample_dpd_stress_acf.npy', dpd_stress_acf)
np.save('dpd_sample_old_stress_acf.npy', old_stress_acf)

# Close non-correlated stress files
dpd_stress.close()
old_stress.close()
kin_stress.close()
temp.close()
ener.close()
Ejemplo n.º 9
0
c_vel = Correlator(obs1=vel_obs,
                   tau_lin=16,
                   tau_max=20.,
                   delta_N=1,
                   corr_operation="scalar_product",
                   compress1="discard1")
system.auto_update_accumulators.add(c_pos)
system.auto_update_accumulators.add(c_vel)

system.integrator.run(1000000)

c_pos.finalize()
c_vel.finalize()

msd = np.column_stack(
    (c_pos.lag_times(), c_pos.sample_sizes(), c_pos.result().reshape([-1, 3])))
vacf = np.column_stack(
    (c_vel.lag_times(), c_vel.sample_sizes(), c_vel.result().reshape([-1, 1])))
np.savetxt("msd.dat", msd)
np.savetxt("vacf.dat", vacf)

# Integral of vacf via Green-Kubo
# D= 1/3 int_0^infty <v(t_0)v(t_0+t)> dt

# Integrate with trapezoidal rule
I = np.trapz(vacf[:, 2], vacf[:, 0])
ratio = 1. / 3. * I / (kT / gamma)
print("Ratio of measured and expected diffusion coefficients from Green-Kubo:",
      ratio)

Ejemplo n.º 10
0
    for pt in system.part.select(lambda p: True):
        force = (pt.f[0]**2 + pt.f[1]**2 + pt.f[2]**2)**(1 / 2)
        if force > max:
            max = force

print(max)
from espressomd import electrostatics
p3m = electrostatics.P3M(prefactor=1.0, accuracy=1e-2)
system.actors.add(p3m)
checkpoint.register("p3m")

fp.close()

# Finalize the correlator and obtain the results
msd_corr.finalize()
msd = msd_corr.result()

# STEP 6

import matplotlib.pyplot as plt
fig1 = plt.figure(num=None,
                  figsize=(10, 6),
                  dpi=80,
                  facecolor='w',
                  edgecolor='k')
fig1.set_tight_layout(False)
plt.plot(r00, avg_rdf00, '-', color="#A60628", linewidth=2, alpha=1)
plt.plot(r11, avg_rdf11, '-', color="#1528b5", linewidth=2, alpha=1)
plt.plot(r01, avg_rdf01, '-', color="#0dbf22", linewidth=2, alpha=1)
plt.xlabel('$r$', fontsize=20)
plt.ylabel('$g(r)$', fontsize=20)
Ejemplo n.º 11
0
c = Correlator(obs1=com_pos,
               tau_lin=16,
               tau_max=loops * step_per_loop,
               delta_N=1,
               corr_operation="square_distance_componentwise",
               compress1="discard1")
system.auto_update_accumulators.add(c)

print("Sampling started.")
for i in range(loops):
    system.integrator.run(step_per_loop)
    system.analysis.append()
    lbf.print_vtk_velocity(outdir + "/fluid%04i.vtk" % i)
    system.part.writevtk(outdir + "/vwf_all%04i.vtk" % i)
    sys.stdout.write("\rSampling: %05i" % i)
    sys.stdout.flush()

c.finalize()
corrdata = c.result()
corr = zeros((corrdata.shape[0], 2))
corr[:, 0] = corrdata[:, 0]
corr[:, 1] = (corrdata[:, 2] + corrdata[:, 3] + corrdata[:, 4]) / 3

savetxt(outdir + "/msd_nom" + str(mpc) + ".dat", corr)

with open(outdir + "/rh_out.dat", "a") as datafile:
    rh = system.analysis.calc_rh(chain_start=0,
                                 number_of_chains=1,
                                 chain_length=mpc - 1)
    datafile.write(str(mpc) + "    " + str(rh[0]) + "\n")
# Open h5md file
h5 = h5md.H5md(filename="./trajectory.h5", write_pos=True, write_lees_edwards_offset = True, write_vel = True, write_ordered=True)

for i in range(args.samples):
    print(i, flush=True)
    h5.write()
    system.integrator.run(5000)

#Close all the files
h5.close()

# Finalizing and results of correlators
c_pos.finalize()
c_vel.finalize()
vacf = c_vel.result()
msd = c_pos.result()

#Saving the results of correlators in numpy-files
np.save('dpd_sample_msd.npy', msd)
np.save('dpd_sample_vacf.npy', vacf)

# Integral of vacf via Green-Kubo
# D= 1/3 int_0^infty <v(t_0)v(t_0+t)> dt
I = 1. / 3. * integrate.cumtrapz(vacf[:, 2], vacf[:, 0], initial=0) / n_part
popt1, pcov1 = curve_fit(vacf_fit, vacf[:,0], I, sigma = 1./np.sqrt(vacf[:, 1]))

# Fit MSD to analytical solution
# <x(t_0)x(t_0+t)> = 6 * D * t
popt2, pcov2 = curve_fit(msd_fit, msd[:, 0], msd[:, 2]+msd[:, 3]+msd[:, 4], sigma = 1./np.sqrt(msd[:, 1]))