Ejemplo n.º 1
0
def compute(audio, pool, options):

    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # frame algorithms
    frames = essentia.FrameGenerator(audio=audio,
                                     frameSize=frameSize,
                                     hopSize=hopSize)
    window = essentia.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = essentia.Spectrum(size=frameSize)

    # spectral algorithms
    energy = essentia.Energy()
    mfcc = essentia.MFCC(highFrequencyBound=8000)

    INFO('Computing Low-Level descriptors necessary for segmentation...')

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    progress = Progress(total=total_frames)

    for frame in frames:

        frameScope = [
            start_of_frame / sampleRate,
            (start_of_frame + frameSize) / sampleRate
        ]
        #pool.setCurrentScope(frameScope)
        pool.add(namespace + '.' + 'scope', frameScope)

        if options['skipSilence'] and essentia.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # need the energy for getting the thumbnail
        pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum))

        # mfcc
        (frame_melbands, frame_mfcc) = mfcc(frame_spectrum)
        pool.add(namespace + '.' + 'spectral_mfcc', frame_mfcc)

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    progress.finish()
Ejemplo n.º 2
0
def compute(audio):
    audio = essentia.array(audio)
    sampleRate = int(conf.opts['sampleRate'])
    frameSize = int(conf.opts['frameSize'])
    hopSize = int(conf.opts['hopSize'])
    zeroPadding = int(conf.opts['zeroPadding'])
    windowType = conf.opts['windowType']

    frameRate = float(sampleRate) / float(hopSize)

    INFO('Computing Ess Detection...')

    frames = FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize)
    window = Windowing(size=frameSize,
                       zeroPadding=zeroPadding,
                       type=windowType)
    fft = FFT()
    cartesian2polar = CartesianToPolar()
    onsetdetectionHFC = OnsetDetection(method="hfc", sampleRate=sampleRate)
    onsetdetectionComplex = OnsetDetection(method="complex",
                                           sampleRate=sampleRate)

    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    hfc = []
    complex = []

    progress = Progress(total=total_frames)
    maxhfc = 0

    for frame in frames:

        windowed_frame = window(frame)
        complex_fft = fft(windowed_frame)
        (spectrum, phase) = cartesian2polar(complex_fft)
        hfc.append(onsetdetectionHFC(spectrum, phase))
        maxhfc = max(hfc[-1], maxhfc)
        complex.append(onsetdetectionComplex(spectrum, phase))

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    # The onset rate is defined as the number of onsets per seconds
    res = [[x / maxhfc for x in hfc]]
    res += [complex]

    return np.array(res)
Ejemplo n.º 3
0
def compute(audio):
    audio = essentia.array(audio)
    sampleRate = int(conf.opts['sampleRate'])
    frameSize = int(conf.opts['frameSize'])
    hopSize = int(conf.opts['hopSize'])
    zeroPadding = int(conf.opts['zeroPadding'])
    windowType = conf.opts['windowType']

    frameRate = float(sampleRate) / float(hopSize)

    INFO('Computing Onset Detection...')

    frames = FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize)
    window = Windowing(size=frameSize,
                       zeroPadding=zeroPadding,
                       type=windowType)
    nsdff = Nsdf()
    fftf = Spectrum()
    crestf = Crest()
    instPowf = InstantPower()

    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    progress = Progress(total=total_frames)
    cr = []
    env = []
    for frame in frames:

        windowed_frame = window(frame)
        nsdf = nsdff(frame)
        fftn = fftf(nsdf)
        cr += [crestf(fftn)]
        pow = instPowf(frame)

        if len(cr) > 2 and pow < opts["minthresh"]:

            cr[-1] = cr[-2]

        n_frames += 1
        start_of_frame += hopSize

    cr = np.array(cr)
    #     w = signal.gaussian(3,1)
    #     area = np.sum(w)
    #     cr =np.convolve(cr,w , 'same')
    #     cr = cr/(100.*area)
    return cr
Ejemplo n.º 4
0
def compute(audio, pool, options):
    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # temporal descriptors
    lpc = ess.LPC(order=10, type='warped', sampleRate=sampleRate)
    zerocrossingrate = ess.ZeroCrossingRate()

    # frame algorithms
    frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize)
    window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = ess.Spectrum(size=frameSize)

    # spectral algorithms
    barkbands = ess.BarkBands(sampleRate=sampleRate)
    centralmoments = ess.CentralMoments()
    crest = ess.Crest()
    centroid = ess.Centroid()
    decrease = ess.Decrease()
    spectral_contrast = ess.SpectralContrast(frameSize=frameSize,
                                             sampleRate=sampleRate,
                                             numberBands=6,
                                             lowFrequencyBound=20,
                                             highFrequencyBound=11000,
                                             neighbourRatio=0.4,
                                             staticDistribution=0.15)
    distributionshape = ess.DistributionShape()
    energy = ess.Energy()
    # energyband_bass, energyband_middle and energyband_high parameters come from "standard" hi-fi equalizers
    energyband_bass = ess.EnergyBand(startCutoffFrequency=20.0, stopCutoffFrequency=150.0, sampleRate=sampleRate)
    energyband_middle_low = ess.EnergyBand(startCutoffFrequency=150.0, stopCutoffFrequency=800.0, sampleRate=sampleRate)
    energyband_middle_high = ess.EnergyBand(startCutoffFrequency=800.0, stopCutoffFrequency=4000.0,
                                            sampleRate=sampleRate)
    energyband_high = ess.EnergyBand(startCutoffFrequency=4000.0, stopCutoffFrequency=20000.0, sampleRate=sampleRate)
    flatnessdb = ess.FlatnessDB()
    flux = ess.Flux()
    harmonic_peaks = ess.HarmonicPeaks()
    hfc = ess.HFC()
    mfcc = ess.MFCC()
    rolloff = ess.RollOff()
    rms = ess.RMS()
    strongpeak = ess.StrongPeak()

    # pitch algorithms
    pitch_detection = ess.PitchYinFFT(frameSize=frameSize, sampleRate=sampleRate)
    pitch_salience = ess.PitchSalience()

    # dissonance
    spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency')
    dissonance = ess.Dissonance()

    # spectral complexity
    # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame
    spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005)

    INFO('Computing Low-Level descriptors...')

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    pitches, pitch_confidences = [], []

    progress = Progress(total=total_frames)

    #scPool = es.Pool()  # pool for spectral contrast

    for frame in frames:

        frameScope = [start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate]
        # pool.setCurrentScope(frameScope)

        # silence rate
        # pool.add(namespace + '.' + 'silence_rate_60dB', es.isSilent(frame))
        pool.add(namespace + '.' + 'silence_rate_60dB', is_silent_threshold(frame, -60))
        pool.add(namespace + '.' + 'silence_rate_30dB', is_silent_threshold(frame, -30))
        pool.add(namespace + '.' + 'silence_rate_20dB', is_silent_threshold(frame, -20))

        if options['skipSilence'] and es.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        # temporal descriptors
        pool.add(namespace + '.' + 'zerocrossingrate', zerocrossingrate(frame))
        (frame_lpc, frame_lpc_reflection) = lpc(frame)
        pool.add(namespace + '.' + 'temporal_lpc', frame_lpc)

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # spectrum-based descriptors
        power_spectrum = frame_spectrum ** 2
        pool.add(namespace + '.' + 'spectral_centroid', centroid(power_spectrum))
        pool.add(namespace + '.' + 'spectral_decrease', decrease(power_spectrum))
        pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_low', energyband_bass(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_middle_low', energyband_middle_low(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_middle_high', energyband_middle_high(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_high', energyband_high(frame_spectrum))
        pool.add(namespace + '.' + 'hfc', hfc(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_rms', rms(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_flux', flux(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_rolloff', rolloff(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_strongpeak', strongpeak(frame_spectrum))

        # central moments descriptors
        frame_centralmoments = centralmoments(power_spectrum)
        (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments)
        pool.add(namespace + '.' + 'spectral_kurtosis', frame_kurtosis)
        pool.add(namespace + '.' + 'spectral_spread', frame_spread)
        pool.add(namespace + '.' + 'spectral_skewness', frame_skewness)

        # dissonance
        (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum)
        frame_dissonance = dissonance(frame_frequencies, frame_magnitudes)
        pool.add(namespace + '.' + 'dissonance', frame_dissonance)

        # mfcc
        (frame_melbands, frame_mfcc) = mfcc(frame_spectrum)
        pool.add(namespace + '.' + 'mfcc', frame_mfcc)

        # spectral contrast
        (sc_coeffs, sc_valleys) = spectral_contrast(frame_spectrum)
        #scPool.add(namespace + '.' + 'sccoeffs', sc_coeffs)
        #scPool.add(namespace + '.' + 'scvalleys', sc_valleys)
        pool.add(namespace + '.' + 'spectral_contrast', sc_coeffs)


        # barkbands-based descriptors
        frame_barkbands = barkbands(frame_spectrum)
        pool.add(namespace + '.' + 'barkbands', frame_barkbands)
        pool.add(namespace + '.' + 'spectral_crest', crest(frame_barkbands))
        pool.add(namespace + '.' + 'spectral_flatness_db', flatnessdb(frame_barkbands))
        barkbands_centralmoments = ess.CentralMoments(range=len(frame_barkbands) - 1)
        (barkbands_spread, barkbands_skewness, barkbands_kurtosis) = distributionshape(
            barkbands_centralmoments(frame_barkbands))
        pool.add(namespace + '.' + 'barkbands_spread', barkbands_spread)
        pool.add(namespace + '.' + 'barkbands_skewness', barkbands_skewness)
        pool.add(namespace + '.' + 'barkbands_kurtosis', barkbands_kurtosis)

        # pitch descriptors
        frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum)
        if frame_pitch > 0 and frame_pitch <= 20000.:
            pool.add(namespace + '.' + 'pitch', frame_pitch)
        pitches.append(frame_pitch)
        pitch_confidences.append(frame_pitch_confidence)
        pool.add(namespace + '.' + 'pitch_instantaneous_confidence', frame_pitch_confidence)

        frame_pitch_salience = pitch_salience(frame_spectrum[:-1])
        pool.add(namespace + '.' + 'pitch_salience', frame_pitch_salience)

        # spectral complexity
        pool.add(namespace + '.' + 'spectral_complexity', spectral_complexity(frame_spectrum))

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    # if no 'temporal_zerocrossingrate' it means that this is a silent file
    if 'zerocrossingrate' not in descriptorNames(pool.descriptorNames(), namespace):
        raise ess.EssentiaError('This is a silent file!')

    #spectralContrastPCA(scPool, pool)

    # build pitch value histogram
    from math import log
    from numpy import bincount
    # convert from Hz to midi notes
    midipitches = []
    unknown = 0
    for freq in pitches:
        if freq > 0. and freq <= 12600:
            midipitches.append(12 * (log(freq / 6.875) / 0.69314718055995) - 3.)
        else:
            unknown += 1

    if len(midipitches) > 0:
        # compute histogram
        midipitchhist = bincount(midipitches)
        # set 0 midi pitch to be the number of pruned value
        midipitchhist[0] = unknown
        # normalise
        midipitchhist = [val / float(sum(midipitchhist)) for val in midipitchhist]
        # zero pad
        for i in range(128 - len(midipitchhist)): midipitchhist.append(0.0)
    else:
        midipitchhist = [0.] * 128
        midipitchhist[0] = 1.

    # pitchhist = ess.array(zip(range(len(midipitchhist)), midipitchhist))
    pool.add(namespace + '.' + 'spectral_pitch_histogram', midipitchhist)  # , pool.GlobalScope)

    # the code below is the same as the one above:
    # for note in midipitchhist:
    #    pool.add(namespace + '.' + 'spectral_pitch_histogram_values', note)
    #    print "midi note:", note

    pitch_centralmoments = ess.CentralMoments(range=len(midipitchhist) - 1)
    (pitch_histogram_spread, pitch_histogram_skewness, pitch_histogram_kurtosis) = distributionshape(
        pitch_centralmoments(midipitchhist))
    pool.add(namespace + '.' + 'spectral_pitch_histogram_spread', pitch_histogram_spread)  # , pool.GlobalScope)

    progress.finish()
Ejemplo n.º 5
0
def compute(audio, pool, options):

    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # frame algorithms
    frames = essentia.FrameGenerator(audio=audio,
                                     frameSize=frameSize,
                                     hopSize=hopSize,
                                     startFromZero=True)
    loudness = essentia.Loudness()

    INFO('Computing Dynamic descriptors...')

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0

    level_array = []

    progress = Progress(total=total_frames)

    for frame in frames:

        frame_level = loudness(frame)
        level_array.append(frame_level)

        # display of progress report
        progress.update(n_frames)

        n_frames += 1

    # Maximum dynamic
    EPSILON = 10e-6
    max_value = max(level_array)
    if max_value <= EPSILON:
        max_value = EPSILON

    # Normalization to the maximum
    THRESHOLD = 0.0001  # this corresponds to -80dB
    for i in range(len(level_array)):
        level_array[i] /= max_value
        if level_array[i] <= THRESHOLD:
            level_array[i] = THRESHOLD

    # Dynamic Average
    mean = essentia.Mean()
    average_loudness = 10.0 * log10(mean(level_array))

    # re-scaling and range-control
    # This yields in numbers between
    #
    #  0 for signals with  large dynamic variace and
    #    thus low dynamic average
    #  1 for signal with little dynamic range and thus
    # a dynamic average close to the maximum

    # TO DO: [0, 0] should be pool.GlobalScope
    average_loudness_within_zero_to_one = squeezeInto([-5, 0], [-2, 1],
                                                      average_loudness)
    pool.add(namespace + "." + "average_loudness",
             average_loudness_within_zero_to_one)  #, pool.GlobalScope)

    # Dynamic Fluctuation
    '''
    variance = essentia.Variance()
    level_variance = variance(level_array)
    if level_variance <= THRESHOLD:
       level_variance = THRESHOLD
    level_fluctuation = 10*log10(level_variance)
    # TO DO: [0, 0] should be pool.GlobalScope
    pool.add("level_fluctuation", level_fluctuation, pool.GlobalScope)
    '''

    INFO('\r100% done...')
Ejemplo n.º 6
0
def compute(audio, pool, options):

    INFO('Computing Tonal descriptors...')

    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    zeroPadding = options['zeroPadding']
    windowType = options['windowType']

    frames = essentia.FrameGenerator(audio=audio,
                                     frameSize=frameSize,
                                     hopSize=hopSize)
    window = essentia.Windowing(size=frameSize,
                                zeroPadding=zeroPadding,
                                type=windowType)
    spectrum = essentia.Spectrum(size=(frameSize + zeroPadding) / 2)
    spectral_peaks = essentia.SpectralPeaks(maxPeaks=10000,
                                            magnitudeThreshold=0.00001,
                                            minFrequency=40,
                                            maxFrequency=5000,
                                            orderBy="frequency")
    tuning = essentia.TuningFrequency()

    # computing the tuning frequency
    tuning_frequency = 440.0

    for frame in frames:

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum)

        #if len(frame_frequencies) > 0:
        (tuning_frequency, tuning_cents) = tuning(frame_frequencies,
                                                  frame_magnitudes)

    pool.add(namespace + '.' + 'tuning_frequency',
             tuning_frequency)  #, pool.GlobalScope)

    # computing the HPCPs
    spectral_whitening = essentia.SpectralWhitening()

    hpcp_key_size = 36
    hpcp_chord_size = 36
    hpcp_tuning_size = 120

    hpcp_key = essentia.HPCP(size=hpcp_key_size,
                             referenceFrequency=tuning_frequency,
                             bandPreset=False,
                             minFrequency=40.0,
                             maxFrequency=5000.0,
                             weightType='squaredCosine',
                             nonLinear=False,
                             windowSize=4.0 / 3.0,
                             sampleRate=sampleRate)

    hpcp_chord = essentia.HPCP(size=hpcp_chord_size,
                               referenceFrequency=tuning_frequency,
                               harmonics=8,
                               bandPreset=True,
                               minFrequency=40.0,
                               maxFrequency=5000.0,
                               splitFrequency=500.0,
                               weightType='cosine',
                               nonLinear=True,
                               windowSize=0.5,
                               sampleRate=sampleRate)

    hpcp_tuning = essentia.HPCP(size=hpcp_tuning_size,
                                referenceFrequency=tuning_frequency,
                                harmonics=8,
                                bandPreset=True,
                                minFrequency=40.0,
                                maxFrequency=5000.0,
                                splitFrequency=500.0,
                                weightType='cosine',
                                nonLinear=True,
                                windowSize=0.5,
                                sampleRate=sampleRate)

    # intializing the HPCP arrays
    hpcps_key = []
    hpcps_chord = []
    hpcps_tuning = []

    # computing HPCP loop
    frames = essentia.FrameGenerator(audio=audio,
                                     frameSize=frameSize,
                                     hopSize=hopSize)

    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    progress = Progress(total=total_frames)

    for frame in frames:

        #frameScope = [ start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate ]
        #pool.setCurrentScope(frameScope)

        if options['skipSilence'] and essentia.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # spectral peaks
        (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum)

        if (len(frame_frequencies) > 0):
            # spectral_whitening
            frame_magnitudes_white = spectral_whitening(
                frame_spectrum, frame_frequencies, frame_magnitudes)
            frame_hpcp_key = hpcp_key(frame_frequencies,
                                      frame_magnitudes_white)
            frame_hpcp_chord = hpcp_chord(frame_frequencies,
                                          frame_magnitudes_white)
            frame_hpcp_tuning = hpcp_tuning(frame_frequencies,
                                            frame_magnitudes_white)
        else:
            frame_hpcp_key = essentia.array([0] * hpcp_key_size)
            frame_hpcp_chord = essentia.array([0] * hpcp_chord_size)
            frame_hpcp_tuning = essentia.array([0] * hpcp_tuning_size)

        # key HPCP
        hpcps_key.append(frame_hpcp_key)

        # add HPCP to the pool
        pool.add(namespace + '.' + 'hpcp', frame_hpcp_key)

        # chords HPCP
        hpcps_chord.append(frame_hpcp_chord)

        # tuning system HPCP
        hpcps_tuning.append(frame_hpcp_tuning)

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    progress.finish()

    # check if silent file
    if len(hpcps_key) == 0:
        raise EssentiaError('This is a silent file!')

    # key detection
    key_detector = essentia.Key(profileType='temperley')
    average_hpcps_key = numpy.average(essentia.array(hpcps_key), axis=0)
    average_hpcps_key = normalize(average_hpcps_key)

    # thpcps
    max_arg = numpy.argmax(average_hpcps_key)
    thpcp = []
    for i in range(max_arg, len(average_hpcps_key)):
        thpcp.append(float(average_hpcps_key[i]))
    for i in range(max_arg):
        thpcp.append(float(average_hpcps_key[i]))
    pool.add(namespace + '.' + 'thpcp', thpcp)  #, pool.GlobalScope  )

    (key, scale, key_strength,
     first_to_second_relative_strength) = key_detector(
         essentia.array(average_hpcps_key))
    pool.add(namespace + '.' + 'key_key', key)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'key_scale', scale)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'key_strength',
             key_strength)  #, pool.GlobalScope)

    # chord detection
    chord_detector = essentia.Key(profileType='tonictriad', usePolyphony=False)
    hpcp_frameSize = 2.0  # 2 seconds
    hpcp_number = int(hpcp_frameSize * (sampleRate / hopSize - 1))

    for hpcp_index in range(len(hpcps_chord)):

        hpcp_index_begin = max(0, hpcp_index - hpcp_number)
        hpcp_index_end = min(hpcp_index + hpcp_number, len(hpcps_chord))
        average_hpcps_chord = numpy.average(essentia.array(
            hpcps_chord[hpcp_index_begin:hpcp_index_end]),
                                            axis=0)
        average_hpcps_chord = normalize(average_hpcps_chord)
        (key, scale, strength,
         first_to_second_relative_strength) = chord_detector(
             essentia.array(average_hpcps_chord))

        if scale == 'minor':
            chord = key + 'm'
        else:
            chord = key

        frame_second_scope = [
            hpcp_index_begin * hopSize / sampleRate,
            hpcp_index_end * hopSize / sampleRate
        ]
        pool.add(namespace + '.' + 'chords_progression',
                 chord)  #, frame_second_scope)
        pool.add(namespace + '.' + 'chords_strength',
                 strength)  #, frame_second_scope)

    # tuning system features
    keydetector = essentia.Key(profileType='diatonic')
    average_hpcps_tuning = numpy.average(essentia.array(hpcps_tuning), axis=0)
    average_hpcps_tuning = normalize(average_hpcps_tuning)
    (key, scale, diatonic_strength,
     first_to_second_relative_strength) = keydetector(
         essentia.array(average_hpcps_tuning))

    pool.add(namespace + '.' + 'tuning_diatonic_strength',
             diatonic_strength)  #, pool.GlobalScope)

    (equal_tempered_deviation, nontempered_energy_ratio,
     nontempered_peaks_energy_ratio
     ) = essentia.HighResolutionFeatures()(average_hpcps_tuning)

    pool.add(namespace + '.' + 'tuning_equal_tempered_deviation',
             equal_tempered_deviation)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'tuning_nontempered_energy_ratio',
             nontempered_energy_ratio)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'tuning_nontempered_peaks_energy_ratio',
             nontempered_peaks_energy_ratio)  #, pool.GlobalScope)
def compute(audio, pool, options):

    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    zeroPadding = options['zeroPadding']
    windowType = options['windowType']

    frameRate = float(sampleRate) / float(frameSize - hopSize)

    INFO('Computing Onset Detection...')

    frames = essentia.FrameGenerator(audio=audio,
                                     frameSize=frameSize,
                                     hopSize=hopSize)
    window = essentia.Windowing(size=frameSize,
                                zeroPadding=zeroPadding,
                                type=windowType)
    fft = essentia.FFT()
    cartesian2polar = essentia.CartesianToPolar()
    onsetdetectionHFC = essentia.OnsetDetection(method="hfc",
                                                sampleRate=sampleRate)
    onsetdetectionComplex = essentia.OnsetDetection(method="complex",
                                                    sampleRate=sampleRate)
    onsets = essentia.Onsets(frameRate=frameRate)

    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    hfc = []
    complex = []

    progress = Progress(total=total_frames)

    for frame in frames:

        if essentia.instantPower(frame) < 1.e-4:
            total_frames -= 1
            start_of_frame += hopSize
            hfc.append(0.)
            complex.append(0.)
            continue

        windowed_frame = window(frame)
        complex_fft = fft(windowed_frame)
        (spectrum, phase) = cartesian2polar(complex_fft)
        hfc.append(onsetdetectionHFC(spectrum, phase))
        complex.append(onsetdetectionComplex(spectrum, phase))

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    # The onset rate is defined as the number of onsets per seconds
    detections = numpy.concatenate(
        [essentia.array([hfc]),
         essentia.array([complex])])

    # prune all 'doubled' detections
    time_onsets = list(onsets(detections, essentia.array([1, 1])))
    t = 1
    while t < len(time_onsets):
        if time_onsets[t] - time_onsets[t - 1] < 0.080: time_onsets.pop(t)
        else: t += 1

    onsetrate = len(time_onsets) / (len(audio) / sampleRate)

    pool.add(namespace + '.' + "onset_times",
             essentia.array(time_onsets))  #, pool.GlobalScope)
    pool.add(namespace + '.' + "onset_rate", onsetrate)  #, pool.GlobalScope)

    progress.finish()
Ejemplo n.º 8
0
def compute(audio, pool, options):

    INFO("Computing Beats descriptors...")

    sampleRate = options['sampleRate']
    windowType = options['windowType']

    beat_window_duration = 0.1  # 100ms
    beat_duration = 0.05  # 50ms estimation after checking some drums kicks duration on freesound

    beats = pool.value('rhythm.beats_position')[0]

    # special case
    if len(beats) == 0:

        # we add them 2 times to get 'mean/var' stats and not 'value'
        # and not on full scope so it's not global
        # FIXME: should use "undefined"
        pool.add("beats_loudness", 0.0, [0., 0.])
        pool.add("beats_loudness", 0.0, [0., 0.])
        pool.add("beats_loudness_bass", 0.0, [0., 0.])
        pool.add("beats_loudness_bass", 0.0, [0., 0.])

        INFO('100% done...')

        return

    duration = pool.value('metadata.duration_processed')[0]

    # FIXME: converted to samples in order to have more accurate control of the size of
    # the window. This is due to FFT not being able to be computed on arrays of
    # odd sizes. Please FIXME later, when FFT accepts all kinds of sizes.
    beat_window_duration = int(beat_window_duration * float(sampleRate) + 0.5)
    beat_duration = int(beat_duration * float(sampleRate) + 0.5)
    duration *= float(sampleRate)
    if beat_duration % 2 == 1:
        beat_duration += 1
        beat_window_duration = beat_duration * 2

    energy = essentia.Energy()
    energybandratio = essentia.EnergyBandRatio(startFrequency=20.0,
                                               stopFrequency=150.0,
                                               sampleRate=sampleRate)

    total_beats = len(beats)
    n_beats = 1

    progress = Progress(total=total_beats)

    between_beats_start = [0.0]
    between_beats_end = []

    beats_spectral_energy = 0.0

    # love on the beats
    for beat in beats:
        # convert beat to samples in order to ensure an even size
        beat = beat * float(sampleRate)

        beat_window_start = (beat - beat_window_duration / 2.0)  # in samples
        beat_window_end = (beat + beat_window_duration / 2.0)  # in samples

        if beat_window_start > 0.0 and beat_window_end < duration:  # in samples
            #print "duration: ", duration, "start:", beat_window_start, "end:", beat_window_end

            beat_window = audio[beat_window_start:beat_window_end]

            beat_start = beat_window_start + max_energy_index(beat_window)
            beat_end = beat_start + beat_duration
            beat_audio = audio[beat_start:beat_end]

            beat_scope = [
                beat_start / float(sampleRate), beat_end / float(sampleRate)
            ]  # in seconds
            #print "beat audio size: ", len(beat_audio)

            window = essentia.Windowing(size=len(beat_audio),
                                        zeroPadding=0,
                                        type=windowType)
            spectrum = essentia.Spectrum(size=len(beat_audio))
            beat_spectrum = spectrum(window(beat_audio))

            beat_spectral_energy = energy(beat_spectrum)
            pool.add(namespace + '.' + 'beats_loudness',
                     beat_spectral_energy)  #, beat_scope)
            beats_spectral_energy += beat_spectral_energy

            beat_spectral_energybandratio = energybandratio(beat_spectrum)
            pool.add(namespace + '.' + 'beats_loudness_bass',
                     beat_spectral_energybandratio)  #, beat_scope)

            # filling between-beats arrays
            between_beats_end.append(beat_start / float(sampleRate))
            between_beats_start.append(beat_end / float(sampleRate))

        # display of progress report
        progress.update(n_beats / float(sampleRate))

        n_beats += 1

    between_beats_end.append(duration)

    between_beats_spectral_energy = 0.0

    # love in between beats
    '''
    for between_beat_start, between_beat_end in zip(between_beats_start, between_beats_end):

        between_beat_audio = audio[between_beat_start * sampleRate : between_beat_end * sampleRate]

        between_beat_scope = [between_beat_start, between_beat_end]

        window = essentia.Windowing(windowSize = len(between_beat_audio), zeroPadding = 0, type = "blackmanharris62")
        spectrum = essentia.Spectrum(size = len(between_beat_audio))
        between_beat_spectrum = spectrum(window(between_beat_audio))

        between_beat_spectral_energy = energy(between_beat_spectrum)
        between_beats_spectral_energy += between_beat_spectral_energy
    '''

    progress.finish()
Ejemplo n.º 9
0
def compute(audio, pool, options):

    INFO('Computing SFX descriptors...')

    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # frame algorithms
    frames = essentia.FrameGenerator(audio=audio,
                                     frameSize=frameSize,
                                     hopSize=hopSize)
    window = essentia.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = essentia.Spectrum(size=frameSize)

    # pitch algorithm
    pitch_detection = essentia.PitchDetection(frameSize=2048,
                                              sampleRate=sampleRate)

    # sfx descriptors
    spectral_peaks = essentia.SpectralPeaks(sampleRate=sampleRate,
                                            orderBy='frequency')
    harmonic_peaks = essentia.HarmonicPeaks()
    inharmonicity = essentia.Inharmonicity()
    odd2evenharmonicenergyratio = essentia.OddToEvenHarmonicEnergyRatio()
    tristimulus = essentia.Tristimulus()

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5
    progress = Progress(total=total_frames)

    for frame in frames:

        frameScope = [
            start_of_frame / sampleRate,
            (start_of_frame + frameSize) / sampleRate
        ]
        #pool.setCurrentScope(frameScope)

        if options['skipSilence'] and essentia.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # pitch descriptors
        frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum)

        # spectral peaks based descriptors
        (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum)
        (frame_harmonic_frequencies,
         frame_harmonic_magnitudes) = harmonic_peaks(frame_frequencies,
                                                     frame_magnitudes,
                                                     frame_pitch)
        if len(frame_harmonic_frequencies) > 1:
            frame_inharmonicity = inharmonicity(frame_harmonic_frequencies,
                                                frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'inharmonicity', frame_inharmonicity)
            frame_tristimulus = tristimulus(frame_harmonic_frequencies,
                                            frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'tristimulus', frame_tristimulus)
            frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio(
                frame_harmonic_frequencies, frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'odd2evenharmonicenergyratio',
                     frame_odd2evenharmonicenergyratio)

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    envelope = essentia.Envelope()
    file_envelope = envelope(audio)

    # temporal statistics
    decrease = essentia.AudioDecrease(blockSize=len(audio))
    pool.add(namespace + '.' + 'temporal_decrease',
             decrease(file_envelope))  #, pool.GlobalScope)

    centralmoments = essentia.AudioCentralMoments(blockSize=len(audio))
    file_centralmoments = centralmoments(file_envelope)

    distributionshape = essentia.DistributionShape()
    (file_spread, file_skewness,
     file_kurtosis) = distributionshape(file_centralmoments)
    pool.add(namespace + '.' + 'temporal_spread',
             file_spread)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'temporal_skewness',
             file_skewness)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'temporal_kurtosis',
             file_kurtosis)  #, pool.GlobalScope)

    centroid = essentia.AudioCentroid(blockSize=len(audio))
    pool.add(namespace + '.' + 'temporal_centroid',
             centroid(file_envelope))  #, pool.GlobalScope)

    # effective duration
    effectiveduration = essentia.EffectiveDuration()
    pool.add(namespace + '.' + 'effective_duration',
             effectiveduration(file_envelope))  #, pool.GlobalScope)

    # log attack time
    logattacktime = essentia.LogAttackTime()
    pool.add(namespace + '.' + 'logattacktime',
             logattacktime(audio))  #, pool.GlobalScope)

    # strong decay
    strongdecay = essentia.StrongDecay()
    pool.add(namespace + '.' + 'strongdecay',
             strongdecay(file_envelope))  #, pool.GlobalScope)

    # dynamic profile
    flatness = essentia.FlatnessSFX()
    pool.add(namespace + '.' + 'flatness',
             flatness(file_envelope))  #, pool.GlobalScope)

    # onsets number
    onsets_number = len(pool.value('rhythm.onset_times')[0])
    pool.add(namespace + '.' + 'onsets_number',
             onsets_number)  #, pool.GlobalScope)

    # morphological descriptors
    max_to_total = essentia.MaxToTotal()
    pool.add(namespace + '.' + 'max_to_total',
             max_to_total(file_envelope))  #, pool.GlobalScope)

    tc_to_total = essentia.TCToTotal(sampleRate=sampleRate)
    pool.add(namespace + '.' + 'tc_to_total',
             tc_to_total(file_envelope))  #, pool.GlobalScope)

    derivativeSFX = essentia.DerivativeSFX(sampleRate=sampleRate)
    (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope)
    pool.add(namespace + '.' + 'der_av_after_max',
             der_av_after_max)  #, pool.GlobalScope)
    pool.add(namespace + '.' + 'max_der_before_max',
             max_der_before_max)  #, pool.GlobalScope)

    # pitch profile
    pitch = pool.value('lowlevel.pitch')

    if len(pitch) > 1:
        pool.add(namespace + '.' + 'pitch_max_to_total',
                 max_to_total(pitch))  #, pool.GlobalScope)

        min_to_total = essentia.MinToTotal()
        pool.add(namespace + '.' + 'pitch_min_to_total',
                 min_to_total(pitch))  #, pool.GlobalScope)

        pitch_centroid = essentia.Centroid(range=len(pitch) - 1)
        pool.add(namespace + '.' + 'pitch_centroid',
                 pitch_centroid(pitch))  #, pool.GlobalScope)

        pitch_after_max_to_before_max_energy_ratio = essentia.AfterMaxToBeforeMaxEnergyRatio(
        )
        pool.add(namespace + '.' +
                 'pitch_after_max_to_before_max_energy_ratio',
                 pitch_after_max_to_before_max_energy_ratio(
                     pitch))  #, pool.GlobalScope)

    else:
        pool.add(namespace + '.' + 'pitch_max_to_total',
                 0.0)  #, pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_min_to_total',
                 0.0)  #, pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_centroid', 0.0)  #, pool.GlobalScope)
        pool.add(namespace + '.' +
                 'pitch_after_max_to_before_max_energy_ratio',
                 0.0)  #, pool.GlobalScope)

    progress.finish()