Ejemplo n.º 1
0
def analHarmonicModelStreaming(params, signal):

    #out = numpy.array(0)
    pool = essentia.Pool()

    # windowing and FFT
    fcut = es.FrameCutter(frameSize=params['frameSize'],
                          hopSize=params['hopSize'],
                          startFromZero=False)
    w = es.Windowing(type="blackmanharris92")
    fft = es.FFT(size=params['frameSize'])
    spec = es.Spectrum(size=params['frameSize'])

    # pitch detection
    pitchDetect = es.PitchYinFFT(frameSize=params['frameSize'],
                                 sampleRate=params['sampleRate'])

    smanal = es.HarmonicModelAnal(
        sampleRate=params['sampleRate'],
        maxnSines=params['maxnSines'],
        magnitudeThreshold=params['magnitudeThreshold'],
        freqDevOffset=params['freqDevOffset'],
        freqDevSlope=params['freqDevSlope'])

    # add half window of zeros to input signal to reach same ooutput length
    signal = numpy.append(signal, zeros(params['frameSize'] / 2))
    insignal = VectorInput(signal)
    insignal.data >> fcut.signal

    fcut.frame >> w.frame
    w.frame >> spec.frame
    w.frame >> fft.frame
    spec.spectrum >> pitchDetect.spectrum

    fft.fft >> smanal.fft
    pitchDetect.pitch >> smanal.pitch
    pitchDetect.pitchConfidence >> (pool, 'pitchConfidence')

    smanal.magnitudes >> (pool, 'magnitudes')
    smanal.frequencies >> (pool, 'frequencies')
    smanal.phases >> (pool, 'phases')

    essentia.run(insignal)

    # remove first half window frames
    mags = pool['magnitudes']
    freqs = pool['frequencies']
    phases = pool['phases']

    # remove short tracks
    minFrames = int(params['minSineDur'] * params['sampleRate'] /
                    params['hopSize'])
    freqsClean = cleaningSineTracks(freqs, minFrames)
    pool['frequencies'].data = freqsClean

    return mags, freqsClean, phases
Ejemplo n.º 2
0
def analsynthHarmonicModelStreaming(params, signal):

    out = array([0.])

    pool = essentia.Pool()
    # windowing and FFT
    fcut = es.FrameCutter(frameSize=params['frameSize'],
                          hopSize=params['hopSize'],
                          startFromZero=False)
    w = es.Windowing(type="blackmanharris92")
    fft = es.FFT(size=params['frameSize'])
    spec = es.Spectrum(size=params['frameSize'])

    # pitch detection
    pitchDetect = es.PitchYinFFT(frameSize=params['frameSize'],
                                 sampleRate=params['sampleRate'])

    smanal = es.HarmonicModelAnal(
        sampleRate=params['sampleRate'],
        maxnSines=params['maxnSines'],
        magnitudeThreshold=params['magnitudeThreshold'],
        freqDevOffset=params['freqDevOffset'],
        freqDevSlope=params['freqDevSlope'],
        minFrequency=params['minFrequency'],
        maxFrequency=params['maxFrequency'])
    smsyn = es.SineModelSynth(sampleRate=params['sampleRate'],
                              fftSize=params['frameSize'],
                              hopSize=params['hopSize'])
    ifft = es.IFFT(size=params['frameSize'])
    overl = es.OverlapAdd(frameSize=params['frameSize'],
                          hopSize=params['hopSize'])

    # add half window of zeros to input signal to reach same ooutput length
    signal = numpy.append(signal, zeros(params['frameSize'] / 2))
    insignal = VectorInput(signal)

    # analysis
    insignal.data >> fcut.signal
    fcut.frame >> w.frame
    w.frame >> spec.frame
    w.frame >> fft.frame
    spec.spectrum >> pitchDetect.spectrum

    fft.fft >> smanal.fft
    pitchDetect.pitch >> smanal.pitch
    pitchDetect.pitchConfidence >> (pool, 'pitchConfidence')
    smanal.magnitudes >> (pool, 'magnitudes')
    smanal.frequencies >> (pool, 'frequencies')
    smanal.phases >> (pool, 'phases')

    # synthesis
    smanal.magnitudes >> smsyn.magnitudes
    smanal.frequencies >> smsyn.frequencies
    smanal.phases >> smsyn.phases
    smsyn.fft >> ifft.fft

    ifft.frame >> overl.frame
    overl.signal >> (pool, 'audio')

    essentia.run(insignal)

    # remove short tracks
    freqs = pool['frequencies']
    minFrames = int(params['minSineDur'] * params['sampleRate'] /
                    params['hopSize'])
    freqsClean = cleaningSineTracks(freqs, minFrames)
    pool['frequencies'].data = freqsClean

    # remove first half window frames
    outaudio = pool['audio']
    outaudio = outaudio[2 * params['hopSize']:]

    return outaudio, pool