Ejemplo n.º 1
0
# Prime digit replacements

import sys
sys.path.append('../')
from euler import listPrimes
from itertools import combinations
import time

for d in range(2,4):
    s = time.time()
    maxVal = 0
    
    print(d, 'DIGITS')
    lower, upper = 10**(d-1), 10**d - 1
    primes = listPrimes(10**d)
    
    digitsToReplace = [i for i in range(d-1)]
    
    occ = {}
    

    for p in primes:
        if p < lower: continue
    
        num = list(str(p))
    
        # number of digits to replace
        for n in range(1,d):
    
            # indices to replace
Ejemplo n.º 2
0
# Project Euler
# Problem 160

# Factorial trailing digits

import sys
sys.path.append('../')
import euler

primes = euler.listPrimes(100)
print(primes)


def f(N):
    ans = 1
    
    for n in range(1,N+1):
        while n % 10 == 0:
            n //= 10
        ans *= n
        while ans % 10 == 0:
            ans //= 10
        ans %= 1000000
        print(str(n) + '   ' + str(ans))
    
    return ans

print(str(f(20))[-5:])
Ejemplo n.º 3
0
# Project Euler
# Problem 41

# Pandigital prime
    
import sys
sys.path.append('../')
from euler import listPrimes
import numpy as np
from itertools import permutations

num = 987654321
primes = listPrimes(int(np.sqrt(num)))

def isPrime(primes, n):
    result = True
    for i in primes:
        if i > np.sqrt(n):
            break
        if n % i == 0:
            result = False
            break
    return result

print('starting....')   

'''
code takes long ish for 9 digits

only need to check up to 7 digits because all 8- and 9-digit pandigital 
numbers are divisible by 3 (sum of digits divisible by 3) and hence not prime
Ejemplo n.º 4
0
# Project Euler
# Problem 47

# Distinct primes factors

import sys
sys.path.append('../')
from euler import listPrimes
from math import sqrt

searchMax = 1000000
primes = listPrimes(int(sqrt(searchMax)))

target = 4
primeFacs = [[] for _ in range(target)]
numPrimeFacs = [0] * target

for n in range(2, searchMax):
    orig = n
    primeFacs.pop(0)
    numPrimeFacs.pop(0)
    primeFacs.append([])

    i = 0
    while primes[i] <= int(sqrt(n)):
        if n % primes[i] == 0:
            primeFacs[-1].append(primes[i])
            n //= primes[i]
        while n % primes[i] == 0:
            n //= primes[i]
        i += 1
Ejemplo n.º 5
0
class Pattern(object):
    def __init__(self, string=''):
        self.string = string
        self.numbers = []
        self.count = 0

    def add(self, number):
        self.numbers.append(number)
        self.count += 1

    def __repr__(self):
        return self.string + ': ' + ' '.join(map(str, self.numbers))

num_digits = 6
primes = listPrimes(10**num_digits)
primes = [p for p in primes if len(str(p)) == num_digits]

patterns = {}

def num_to_pattern_string(n, to_replace):
    pattern = list(str(n))
    for i in range(len(pattern)):
        if to_replace[i] == 1:
            pattern[i] = 'X'
    return ''.join(pattern)

def compute_pattern(p, to_replace, digit):
    if to_replace[0] == 1 and digit == 0:
        return
    if sum(to_replace) == 0:
Ejemplo n.º 6
0
# Project Euler
# Problem 87

# Prime power triples

import sys

sys.path.append('../')
from euler import listPrimes
import math
from bisect import bisect_left

cap = 50 * 10**6
a_cap = int(cap**(1 / 2))

primes = listPrimes(int(math.sqrt(cap)))
numbers = set()

for a in primes:

    b_cap = bisect_left(primes, (cap - a**2)**(1 / 3))
    for b in primes[:b_cap]:

        c_cap = bisect_left(primes, (cap - a**2 - b**3)**(1 / 4))
        for c in primes[:c_cap]:

            num = a**2 + b**3 + c**4
            if num < cap:
                numbers.add(num)

print(len(numbers))
Ejemplo n.º 7
0
# Project Euler
# Problem 37

# Truncatable primes

import sys
sys.path.append('../')
from euler import listPrimes
import numpy as np

primes = listPrimes(1000000)
maxIndex = np.shape(primes)[0] - 1

target = 11
i = 0
count = 0
truncatablePrimes = []
while count < target and i < maxIndex:
    n = primes[i]
    i += 1
    if n < 10:
        continue
    truncatable = True

    string = str(n)
    for j in '02468':
        if j in string[1:]:
            truncatable = False
            break
    if not truncatable:
        continue
Ejemplo n.º 8
0
# Project Euler
# Problem 49

# Prime permutations
    
import sys
sys.path.append('../')
from euler import listPrimes

searchMax = 10000
primes = listPrimes(searchMax)
for i in range(len(primes)-1, -1, -1):
    if primes[i] <= 1000:
        primes.pop(i)

values = []

for n in primes:
    deltaMax = (9999 - n) // 2
    sortedTarget = sorted(str(n))
    
    for delta in range(2,deltaMax,2):
        if sorted(str(n+delta)) != sortedTarget:
            continue
        elif sorted(str(n+2*delta)) != sortedTarget:
            continue
        elif (n + delta) not in primes:
            continue
        elif (n + 2*delta) not in primes:
            continue
        
Ejemplo n.º 9
0
# Project Euler
# Problem 50

# Consecutive prime sum

import sys
sys.path.append('../')
from euler import listPrimes

target = 10**6
longest = 21
primes = listPrimes(target)
ans = 2
i = 0

while primes[i] * longest < target:
    length = longest
    j = i + longest

    sumSeq = sum(primes[i:j])
    while sumSeq < target:

        if sumSeq in primes:
            longest = length
            ans = sumSeq

        length += 1
        j += 1
        sumSeq = sum(primes[i:j])

    i += 1