Ejemplo n.º 1
0
def genNdigitNPower( limit=30 ):
    """
    >>> s5= list( genNdigitNPower(6) )
    >>> (7, 5, 16807) in s5
    True
    >>> s9= list( genNdigitNPower(10) )
    >>> (8, 9, 134217728) in s9
    True
    """
    for p in range(limit):
        i= 0
        while len(digits(i**p)) <= p:
            if len(digits(i**p)) == p:
                yield i, p, i**p
            i += 1
Ejemplo n.º 2
0
def primeGapPerm():
    """There are just two answers.
    >>> from euler49 import primeGapPerm
    >>> list(primeGapPerm())
    [(1487, 4817, 8147), (2969, 6299, 9629)]
    """
    p4 = list(makePrimes())
    gaps= set( makeGaps(p4) )
    step3= list( threeStep( p4, gaps ) )

    for a, b, c in step3:
        da= digits(a)
        db= digits(b)
        dc= digits(c)
        if isPermutation(da,db) and isPermutation(db,dc):
            yield a,b,c
Ejemplo n.º 3
0
def genUnorthodoxCancels():
    """Compare digit cancellation and proper fraction reduction.

    >>> from euler33 import genUnorthodoxCancels
    >>> list( genUnorthodoxCancels() )
    [(16, 64), (26, 65), (19, 95), (49, 98)]
    """
    for d in range(11,100):
        for n in range(11,d):
            dn, dd = digits(n), digits(d)
            if dn[1] == 0 or dd[1] == 0: continue
            n2, d2 = cancelDigits(dn,dd)
            if dn == n2: continue # No improper digit cancellation
            r= gcd(n,d)
            r2= gcd(n2[0],d2[0])
            if n//r == n2[0]//r2 and d//r == d2[0]//r2:
                #print( n, d, n2, d2 )
                yield n, d
Ejemplo n.º 4
0
def pow2_digits3( n ):
    """Return digits from :math:`2^n`

    >>> from euler16 import pow2_digits3
    >>> pow2_digits3(15)
    [3, 2, 7, 6, 8]
    >>> sum(pow2_digits3(15))
    26
    """
    return digits(2**n)
Ejemplo n.º 5
0
def numerator( convergent, position ):
    """
    >>> converge_e = fraction_steps( 2, tuple(den_pat_e(10)) )
    >>> n= numerator( converge_e, 10 )
    >>> n
    [1, 4, 5, 7]
    >>> sum( n )
    17
    """
    [ next(convergent) for i in range(position-1) ]
    term= next(convergent)
    #print( term, float(term) )
    numerator = term.numerator
    return digits(numerator)
Ejemplo n.º 6
0
def digit_sum_gen():
    """
    >>> from euler56 import digit_sum_gen
    >>> max( digit_sum_gen() )
    (972, 99, 95)
    >>> sum(digits(99**95))
    972
    """
    for a in range(100):
        p = 1
        for b in range(100):
            s = sum(digits(p))
            yield s, a, b
            p *= a
Ejemplo n.º 7
0
def prodConcat( n ):
    """Create a 9-digit concatenaed product by successive multiplications
    of n by 1, 2, 3, ..., 9

    >>> from euler38 import prodConcat
    >>> prodConcat( 192 )
    [1, 9, 2, 3, 8, 4, 5, 7, 6]
    >>> prodConcat( 9 )
    [9, 1, 8, 2, 7, 3, 6, 4, 5]
    """
    seq= []
    for p in range(1,10):
        seq.extend( digits(n*p) )
        if len(seq) >= 9: break
    return seq
Ejemplo n.º 8
0
def reverseAndAdd( n ):
    """
    >>> from euler55 import reverseAndAdd
    >>> from euler04 import palindrome
    >>> reverseAndAdd(47)
    121
    >>> palindrome( reverseAndAdd(47) )
    True
    >>> reverseAndAdd( reverseAndAdd( reverseAndAdd( 349 ) ) )
    7337
    >>> palindrome( reverseAndAdd( reverseAndAdd( reverseAndAdd( 349 ) ) ) )
    True
    """
    d = digits(n)
    d.reverse()
    return n + number(d)
Ejemplo n.º 9
0
def digitStream( limit ):
    """
    >>> from euler40 import digitStream
    >>> s= list(digitStream(32))
    >>> s[11]
    1
    >>> s
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1]
    """
    n= 1
    dFed= 0
    while dFed < limit:
        for d in digits(n):
            yield d
            dFed += 1
        n += 1
Ejemplo n.º 10
0
def circularPrimes( limit ):
    """
    >>> from euler35 import circularPrimes
    >>> cp100= circularPrimes( 100 )
    >>> len(cp100)
    13
    >>> sorted( set( cp100 ) )
    [2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97]
    """
    cp= set()
    for n in range(2,limit):
        if isprime(n) and n not in cp:
            rs= [ number(r) for r in rotations( digits(n) ) ]
            circular= all( map( isprime, rs ) )
            if circular:
                for r in rs:
                    cp.add(r)
    return cp
Ejemplo n.º 11
0
def answer():
    for i in range(1,1000000000):
        di= digits(i)
        p = [ isPermutation( di, digits(k*i) ) for k in range(2,7) ]
        if all(p):
            return i
Ejemplo n.º 12
0
def curious( limit=999999 ):
    for i in range(3,limit+1):
        p = sum( map( fact, digits(i) ) )
        #print i, p
        if p == i:
            yield i
Ejemplo n.º 13
0
def answer():
    for a,b,c in primeGapPerm():
        if a == 1487 and b == 4817 and c == 8147:
            continue
        return number( digits(a) + digits(b) + digits(c) )
Ejemplo n.º 14
0
def test():
    import doctest
    doctest.testmod(verbose=0)
    assert pandigital( digits(192384576) )