Ejemplo n.º 1
0
    def test_element_design(self):

        element = SeasonalElement(n_triangulation_divisions=1,
                                  n_harmonics=3,
                                  include_local_mean=True)
        design = element.element_design(
            TestSeasonalElement.SimulatedObservationStructure())
        self.assertTrue(isinstance(design, SeasonalElementDesign))
        self.assertTrue(
            isinstance(design.observationstructure,
                       TestSeasonalElement.SimulatedObservationStructure))
        self.assertEqual(1, design.spde.triangulation.level)
        self.assertEqual(3, design.n_harmonics)
        self.assertEqual(True, design.include_local_mean)
Ejemplo n.º 2
0
    def test_element_prior(self):

        element = SeasonalElement(n_triangulation_divisions=1,
                                  n_harmonics=3,
                                  include_local_mean=False)
        prior = element.element_prior(
            SeasonalHyperparameters(n_spatial_components=3,
                                    common_log_sigma=0.5,
                                    common_log_rho=0.7))
        self.assertTrue(isinstance(prior, SeasonalElementPrior))
        numpy.testing.assert_equal([0.5, 0.7, 0.5, 0.7, 0.5, 0.7],
                                   prior.hyperparameters.get_array())
        self.assertEqual(3, prior.n_harmonics)
        self.assertEqual(False, prior.include_local_mean)
        self.assertEqual(2, prior.alpha)
Ejemplo n.º 3
0
    def __init__(self):

        super(ClimatologyDefinition, self).__init__(
            SeasonalElement(n_triangulation_divisions=5,
                            n_harmonics=5,
                            include_local_mean=True),
            SeasonalHyperparameters(n_spatial_components=6,
                                    common_log_sigma=1.0,
                                    common_log_rho=0.0))
Ejemplo n.º 4
0
    def test_init(self):

        s = SeasonalElement(n_triangulation_divisions=1,
                            n_harmonics=3,
                            include_local_mean=True)
        self.assertEqual(1, s.spde.triangulation.level)
        self.assertEqual(3, s.n_harmonics)
        self.assertEqual(True, s.include_local_mean)
        self.assertEqual(2, s.alpha)
Ejemplo n.º 5
0
    def __init__(self, covariates_descriptor):
        if covariates_descriptor is not None:
            loader = LoadCovariateElement(covariates_descriptor)
            loader.check_keys()
            covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
            print('The following fields have been added as covariates of the climatology model')
            print(loader.data.keys())
        else:
            covariate_elements, covariate_hyperparameters = [], []

        setup = ClimatologySetup()
        
        super(ClimatologyDefinition, self).__init__(
            CombinationElement( [SeasonalElement(setup.n_triangulation_divisions, 
                                                 setup.n_harmonics, 
                                                 include_local_mean=True), GrandMeanElement()] + covariate_elements),
            CombinationHyperparameters( [SeasonalHyperparameters(setup.n_spatial_components, 
                                                                 numpy.log(setup.amplitude), 
                                                                 numpy.log(numpy.radians(setup.space_length_scale))), 
                                         CovariateHyperparameters(numpy.log(setup.grandmean_amplitude))] + covariate_hyperparameters))
Ejemplo n.º 6
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
Ejemplo n.º 7
0
    def test_mini_world_noiseless(self):

        number_of_simulated_time_steps = 1

        # Build system
        element = SeasonalElement(n_triangulation_divisions=3,
                                  n_harmonics=5,
                                  include_local_mean=True)
        hyperparameters = SeasonalHyperparameters(n_spatial_components=6,
                                                  common_log_sigma=0.0,
                                                  common_log_rho=0.0)

        component = SpaceTimeComponent(
            ComponentStorage_InMemory(element, hyperparameters),
            SpaceTimeComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = numpy.random.randn(fixed_locations.shape[0])
        #print(field_basis.shape)
        #time_basis = numpy.array(harmonics_list)
        # some time function that varies over a year
        #decimal_years = numpy.array([datetime_to_decimal_year(epoch_plus_days(step)) for step in range(number_of_simulated_time_steps)])
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))
        # kronecker product of the two
        #print(numpy.expand_dims(time_basis, 1))
        measurement = numpy.kron(field_basis, numpy.expand_dims(
            time_basis, 1))  #numpy.expand_dims(time_basis, 1))

        #print(measurement.shape)
        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.0001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # Iterate
        for iteration in range(5):
            analysis_system.update([simulated_input_loader],
                                   simulated_time_indices)

    # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

    # Should be very close to original because specified noise is low
        numpy.testing.assert_almost_equal(result, measurement)
        max_disparity = (numpy.abs(result - measurement)).ravel().max()
        self.assertTrue(max_disparity < 1E-5)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
Ejemplo n.º 8
0
def main():

    print 'EUSTACE example using HadCRUT4 monthly data'

    # Input data path
    input_basepath = os.path.join(WORKSPACE_PATH, 'data/incoming/HadCRUT4.5.0.0')

    # Input filenames
    input_filenames = [
        'hadcrut4_median_netcdf.nc',
        'hadcrut4_uncorrelated_supplementary.nc',
        'hadcrut4_blended_uncorrelated.nc' ]

    # Months to process
    time_indices = range(2)

    # Climatology component
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(SeasonalElement(n_triangulation_divisions=5, n_harmonics=5, include_local_mean=True),
                                                                         SeasonalHyperparameters(n_spatial_components=6, common_log_sigma=1.0, common_log_rho=0.0)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Number of factors for large scale (factor analysis) component and initial hyperparameters
    n_factors = 5
    factors = [ ]
    factor_hyperparameters = [ ]
    for factor_index in range(n_factors):

        factor_hyperparameters.append( SpaceTimeSPDEHyperparameters(
                space_log_sigma=0.0,
                space_log_rho=numpy.log(10.0 * numpy.pi/180 + 25.0 * numpy.pi/180 *(n_factors - factor_index) / n_factors),
                time_log_rho=numpy.log(1/12.0 + 6/12.0*(n_factors - factor_index) / n_factors)) )

        factors.append( SpaceTimeFactorElement(n_triangulation_divisions=5, alpha=2, starttime=0, endtime=36, overlap_factor=2.5, H=1) )

    # Large scale (factor analysis) component
    large_scale_component = SpaceTimeComponent(ComponentStorage_InMemory(CombinationElement(factors), CombinationHyperparameters(factor_hyperparameters)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4), 
                                                                 LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(10.0 * numpy.pi/180))),
                                       SpatialComponentSolutionStorage_InMemory())

    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Make filelist
    input_filelist = [ os.path.join(input_basepath, filename) for filename in input_filenames ]

    # Object to load HadCRUT4 inputs at time indices
    inputloader = AnalysisSystemInputLoaderHadCRUT4(input_filelist)

    # Update with data
    analysis_system.update([ inputloader ], time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Make output filename
        outputdate = inputloader.datetime_at_time_index(time_index)
        pathname = 'example_output_{0:04d}{1:02d}.nc'.format(outputdate.year, outputdate.month)
        print 'Saving: ', pathname

        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-87.5, 87.5, num=36),
            longitudes=numpy.linspace(-177.5, 177.5, num=72))

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(outputstructure)

        # Save results
        filebuilder = FileBuilderHadCRUT4ExampleOutput(pathname, outputstructure)
        filebuilder.add_global_field(TAS_ANOMALY, result_expected_value.reshape(1,36,72))
        filebuilder.save_and_close()

    print 'Complete'