def fit_resample(self, X, y):
        """Resampling technique for this sampler.

        Arguments:
            X (pd.DataFrame): Training data to fit and resample
            y (pd.Series): Training data targets to fit and resample

        Returns:
            list: Indices to keep for training data
        """
        X_ww = infer_feature_types(X)
        y_ww = infer_feature_types(y)
        X = _convert_woodwork_types_wrapper(X_ww.to_dataframe())
        y = _convert_woodwork_types_wrapper(y_ww.to_series())
        result = self._find_ideal_samples(y)
        indices_to_drop = []
        if len(result):
            # iterate through the classes we need to undersample and remove the number of samples we need to remove
            for key, value in result.items():
                indices = y.index[y == key].values
                indices_to_remove = self.random_state.choice(indices,
                                                             value,
                                                             replace=False)
                indices_to_drop.extend(indices_to_remove)
        return list(set(list(y.index.values)).difference(set(indices_to_drop)))
Ejemplo n.º 2
0
    def validate(self, X, y):
        """Check if any of the features are highly correlated with the target by using mutual information or Pearson correlation.

        If `method='mutual'`, supports all target and feature types. Otherwise, if `method='pearson'` only supports binary with numeric and boolean dtypes.
        Pearson correlation returns a value in [-1, 1], while mutual information returns a value in [0, 1].

        Arguments:
            X (ww.DataTable, pd.DataFrame, np.ndarray): The input features to check
            y (ww.DataColumn, pd.Series, np.ndarray): The target data

        Returns:
            dict (DataCheckWarning): dict with a DataCheckWarning if target leakage is detected.

        Example:
            >>> import pandas as pd
            >>> X = pd.DataFrame({
            ...    'leak': [10, 42, 31, 51, 61],
            ...    'x': [42, 54, 12, 64, 12],
            ...    'y': [13, 5, 13, 74, 24],
            ... })
            >>> y = pd.Series([10, 42, 31, 51, 40])
            >>> target_leakage_check = TargetLeakageDataCheck(pct_corr_threshold=0.95)
            >>> assert target_leakage_check.validate(X, y) == {"warnings": [{"message": "Column 'leak' is 95.0% or more correlated with the target",\
                                                                             "data_check_name": "TargetLeakageDataCheck",\
                                                                             "level": "warning",\
                                                                             "code": "TARGET_LEAKAGE",\
                                                                             "details": {"column": "leak"}}],\
                                                               "errors": [],\
                                                               "actions": [{"code": "DROP_COL",\
                                                                            "metadata": {"column": "leak"}}]}
        """
        results = {"warnings": [], "errors": [], "actions": []}

        X = infer_feature_types(X)
        y = infer_feature_types(y)

        if self.method == 'pearson':
            highly_corr_cols = self._calculate_pearson(X, y)
        else:
            X = _convert_woodwork_types_wrapper(X.to_dataframe())
            y = _convert_woodwork_types_wrapper(y.to_series())
            highly_corr_cols = self._calculate_mutual_information(X, y)

        warning_msg = "Column '{}' is {}% or more correlated with the target"
        results["warnings"].extend([
            DataCheckWarning(message=warning_msg.format(
                col_name, self.pct_corr_threshold * 100),
                             data_check_name=self.name,
                             message_code=DataCheckMessageCode.TARGET_LEAKAGE,
                             details={
                                 "column": col_name
                             }).to_dict() for col_name in highly_corr_cols
        ])
        results["actions"].extend([
            DataCheckAction(DataCheckActionCode.DROP_COL,
                            metadata={
                                "column": col_name
                            }).to_dict() for col_name in highly_corr_cols
        ])
        return results
Ejemplo n.º 3
0
 def _calculate_pearson(self, X, y):
     highly_corr_cols = []
     X_num = X.select(include=numeric_and_boolean_ww)
     if y.logical_type not in numeric_and_boolean_ww or len(X_num.columns) == 0:
         return highly_corr_cols
     X_num = _convert_woodwork_types_wrapper(X_num.to_dataframe())
     y = _convert_woodwork_types_wrapper(y.to_series())
     highly_corr_cols = [label for label, col in X_num.iteritems() if abs(y.corr(col)) >= self.pct_corr_threshold]
     return highly_corr_cols
Ejemplo n.º 4
0
    def fit_resample(self, X, y):
        """Resampling technique for this sampler.

        Arguments:
            X (pd.DataFrame): Training data to fit and resample
            y (pd.Series): Training data targets to fit and resample

        Returns:
            list: Indices to keep for training data
        """
        y_ww = infer_feature_types(y)
        y = _convert_woodwork_types_wrapper(y_ww.to_series())
        # if we have a dictionary provided, opt to use that
        if len(self.sampling_ratio_dict):
            result = self._sampling_dict_to_remove_dict(y)
        else:
            result = self._find_ideal_samples(y)
        indices_to_drop = []
        if len(result):
            # iterate through the classes we need to undersample and remove the number of samples we need to remove
            for key, value in result.items():
                indices = y.index[y == key].values
                indices_to_remove = self.random_state.choice(indices,
                                                             value,
                                                             replace=False)
                indices_to_drop.extend(indices_to_remove)
        # indices of the y datacolumn
        original_indices = list(
            set(y.index.values).difference(set(indices_to_drop)))
        return original_indices
Ejemplo n.º 5
0
    def validate(self, X, y=None):
        """Checks if there are any columns in the input that are too unique in the case of classification
        problems or not unique enough in the case of regression problems.

        Arguments:
            X (ww.DataTable, pd.DataFrame, np.ndarray): Features.
            y (ww.DataColumn, pd.Series, np.ndarray): Ignored.  Defaults to None.

        Returns:
            dict: dict with a DataCheckWarning if there are any too unique or not
                unique enough columns.

        Example:
            >>> import pandas as pd
            >>> df = pd.DataFrame({
            ...    'regression_unique_enough': [float(x) for x in range(100)],
            ...    'regression_not_unique_enough': [float(1) for x in range(100)]
            ... })
            >>> uniqueness_check = UniquenessDataCheck(problem_type="regression", threshold=0.8)
            >>> assert uniqueness_check.validate(df) == {"errors": [],\
                                                         "warnings": [{"message": "Input columns (regression_not_unique_enough) for regression problem type are not unique enough.",\
                                                                 "data_check_name": "UniquenessDataCheck",\
                                                                 "level": "warning",\
                                                                 "code": "NOT_UNIQUE_ENOUGH",\
                                                                 "details": {"column": "regression_not_unique_enough", 'uniqueness_score': 0.0}}],\
                                                         "actions": []}
        """
        results = {"warnings": [], "errors": [], "actions": []}

        X = infer_feature_types(X)
        X = _convert_woodwork_types_wrapper(X.to_dataframe())

        res = X.apply(UniquenessDataCheck.uniqueness_score)

        if is_regression(self.problem_type):
            not_unique_enough_cols = list(res.index[res < self.threshold])
            results["warnings"].extend([
                DataCheckWarning(
                    message=warning_not_unique_enough.format(
                        col_name, self.problem_type),
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.NOT_UNIQUE_ENOUGH,
                    details={
                        "column": col_name,
                        "uniqueness_score": res.loc[col_name]
                    }).to_dict() for col_name in not_unique_enough_cols
            ])
        elif is_multiclass(self.problem_type):
            too_unique_cols = list(res.index[res > self.threshold])
            results["warnings"].extend([
                DataCheckWarning(message=warning_too_unique.format(
                    col_name, self.problem_type),
                                 data_check_name=self.name,
                                 message_code=DataCheckMessageCode.TOO_UNIQUE,
                                 details={
                                     "column": col_name,
                                     "uniqueness_score": res.loc[col_name]
                                 }).to_dict() for col_name in too_unique_cols
            ])
        return results
Ejemplo n.º 6
0
    def _prepare_data(self, X, y):
        """Transforms the input data to pandas data structure that our sampler can ingest.

        Arguments:
            X (ww.DataFrame): Training features
            y (ww.DataColumn): Target features

         Returns:
            ww.DataTable, ww.DataColumn, pd.DataFrame, pd.Series: Prepared X and y data, both woodwork and pandas
        """
        X = infer_feature_types(X)
        if y is None:
            raise ValueError("y cannot be none")
        y = infer_feature_types(y)
        X_pd = _convert_woodwork_types_wrapper(X.to_dataframe())
        y_pd = _convert_woodwork_types_wrapper(y.to_series())
        return X, y, X_pd, y_pd
Ejemplo n.º 7
0
 def split(self, X, y):
     """Splits and returns the indices of the training and testing using the data sampler provided.
     Arguments:
             X (ww.DataTable): DataTable of points to split
             y (ww.DataTable): DataColumn of points to split
     Returns:
         tuple(train, test): A tuple containing the resulting train and test indices, post sampling.
     """
     X_ww = infer_feature_types(X)
     y_ww = infer_feature_types(y)
     X = _convert_woodwork_types_wrapper(X_ww.to_dataframe())
     y = _convert_woodwork_types_wrapper(y_ww.to_series())
     index_df = pd.Series(y.index)
     for train, test in self.splitter.split(X, y):
         X_train, y_train = X.iloc[train], y.iloc[train]
         train_index_drop = self.sampler.fit_resample(X_train, y_train)
         # convert the indices of the y column into index indices of the original pre-split y
         train_indices = index_df[index_df.isin(train_index_drop)].dropna().index.values.tolist()
         yield iter([train_indices, test])
Ejemplo n.º 8
0
    def validate(self, X, y=None):
        """Calculates what percentage of each column's unique values exceed the count threshold and compare
        that percentage to the sparsity threshold stored in the class instance.
        Arguments:
            X (ww.DataTable, pd.DataFrame, np.ndarray): Features.
            y (ww.DataColumn, pd.Series, np.ndarray): Ignored.
        Returns:
            dict: dict with a DataCheckWarning if there are any sparse columns.
        Example:
            >>> import pandas as pd
            >>> df = pd.DataFrame({
            ...    'sparse': [float(x) for x in range(100)],
            ...    'not_sparse': [float(1) for x in range(100)]
            ... })
            >>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5, unique_count_threshold=10)
            >>> assert sparsity_check.validate(df) == {"errors": [],\
                                                       "warnings": [{"message": "Input columns (sparse) for multiclass problem type are too sparse.",\
                                                            "data_check_name": "SparsityDataCheck",\
                                                            "level": "warning",\
                                                            "code": "TOO_SPARSE",\
                                                            "details": {"column": "sparse", 'sparsity_score': 0.0}}],\
                                                       "actions": [{"code": "DROP_COL",\
                                                                 "metadata": {"column": "sparse"}}]}
        """
        results = {"warnings": [], "errors": [], "actions": []}

        X = infer_feature_types(X)
        X = _convert_woodwork_types_wrapper(X.to_dataframe())

        res = X.apply(SparsityDataCheck.sparsity_score,
                      count_threshold=self.unique_count_threshold)
        too_sparse_cols = [col for col in res.index[res < self.threshold]]
        results["warnings"].extend([
            DataCheckWarning(message=warning_too_unique.format(
                col_name, self.problem_type),
                             data_check_name=self.name,
                             message_code=DataCheckMessageCode.TOO_SPARSE,
                             details={
                                 "column": col_name,
                                 "sparsity_score": res.loc[col_name]
                             }).to_dict() for col_name in too_sparse_cols
        ])
        results["actions"].extend([
            DataCheckAction(action_code=DataCheckActionCode.DROP_COL,
                            metadata={
                                "column": col_name
                            }).to_dict() for col_name in too_sparse_cols
        ])
        return results
Ejemplo n.º 9
0
 def transform_sample(self, X, y):
     """Transforms the input data with the balancing strategy.
         Arguments:
             X (ww.DataTable): DataTable of points to split
             y (ww.DataTable): DataColumn of points to split
         Returns:
             list: List of indices to keep
     """
     y_ww = infer_feature_types(y)
     y = _convert_woodwork_types_wrapper(y_ww.to_series())
     index_df = pd.Series(y.index)
     train_index_drop = self.sampler.fit_resample(X, y)
     # convert the indices of the y column into index indices of the original pre-split y
     train_indices = index_df[index_df.isin(train_index_drop)].dropna().index.values.tolist()
     return train_indices
Ejemplo n.º 10
0
    def validate(self, X, y=None):
        """Checks if any datetime columns contain NaN values.

        Arguments:
            X (ww.DataTable, pd.DataFrame, np.ndarray): Features.
            y (ww.DataColumn, pd.Series, np.ndarray): Ignored.  Defaults to None.

        Returns:
            dict: dict with a DataCheckError if NaN values are present in datetime columns.

        Example:
            >>> import pandas as pd
            >>> import woodwork as ww
            >>> import numpy as np
            >>> dates = np.arange(np.datetime64('2017-01-01'), np.datetime64('2017-01-08'))
            >>> dates[0] = np.datetime64('NaT')
            >>> ww_input = ww.DataTable(pd.DataFrame(dates, columns=['index']))
            >>> dt_nan_check = DateTimeNaNDataCheck()
            >>> assert dt_nan_check.validate(ww_input) == {"warnings": [],
            ...                                             "actions": [],
            ...                                             "errors": [DataCheckError(message='Input datetime column(s) (index) contains NaN values. Please impute NaN values or drop these rows or columns.',
            ...                                                                     data_check_name=DateTimeNaNDataCheck.name,
            ...                                                                     message_code=DataCheckMessageCode.DATETIME_HAS_NAN,
            ...                                                                     details={"columns": 'index'}).to_dict()]}
        """
        results = {
            "warnings": [],
            "errors": [],
            "actions": []
        }

        X = infer_feature_types(X)
        datetime_cols = _convert_woodwork_types_wrapper(X.select("datetime").to_dataframe())
        nan_columns = datetime_cols.columns[datetime_cols.isna().any()].tolist()
        if len(nan_columns) > 0:
            nan_columns = [str(col) for col in nan_columns]
            cols_str = ', '.join(nan_columns) if len(nan_columns) > 1 else nan_columns[0]
            results["errors"].append(DataCheckError(message=error_contains_nan.format(cols_str),
                                                    data_check_name=self.name,
                                                    message_code=DataCheckMessageCode.DATETIME_HAS_NAN,
                                                    details={"columns": cols_str}).to_dict())
        return results
Ejemplo n.º 11
0
    def train_and_score_pipeline(pipeline, automl, full_X_train, full_y_train):
        """Given a pipeline, config and data, train and score the pipeline and return the CV or TV scores

        Arguments:
            pipeline (PipelineBase): The pipeline to score
            automl (AutoMLSearch): The AutoML search, used to access config and for the error callback
            full_X_train (ww.DataTable): Training features
            full_y_train (ww.DataColumn): Training target

        Returns:
            dict: A dict containing cv_score_mean, cv_scores, training_time and a cv_data structure with details.
        """
        start = time.time()
        cv_data = []
        logger.info("\tStarting cross validation")
        X_pd = _convert_woodwork_types_wrapper(full_X_train.to_dataframe())
        y_pd = _convert_woodwork_types_wrapper(full_y_train.to_series())
        y_pd_encoded = y_pd
        # Encode target for classification problems so that we can support float targets. This is okay because we only use split to get the indices to split on
        if is_classification(automl.problem_type):
            y_mapping = {
                original_target: encoded_target
                for (encoded_target,
                     original_target) in enumerate(y_pd.value_counts().index)
            }
            y_pd_encoded = y_pd.map(y_mapping)
        for i, (train, valid) in enumerate(
                automl.data_splitter.split(X_pd, y_pd_encoded)):
            if pipeline.model_family == ModelFamily.ENSEMBLE and i > 0:
                # Stacked ensembles do CV internally, so we do not run CV here for performance reasons.
                logger.debug(
                    f"Skipping fold {i} because CV for stacked ensembles is not supported."
                )
                break
            logger.debug(f"\t\tTraining and scoring on fold {i}")
            X_train, X_valid = full_X_train.iloc[train], full_X_train.iloc[
                valid]
            y_train, y_valid = full_y_train.iloc[train], full_y_train.iloc[
                valid]
            if is_binary(automl.problem_type) or is_multiclass(
                    automl.problem_type):
                diff_train = set(
                    np.setdiff1d(full_y_train.to_series(),
                                 y_train.to_series()))
                diff_valid = set(
                    np.setdiff1d(full_y_train.to_series(),
                                 y_valid.to_series()))
                diff_string = f"Missing target values in the training set after data split: {diff_train}. " if diff_train else ""
                diff_string += f"Missing target values in the validation set after data split: {diff_valid}." if diff_valid else ""
                if diff_string:
                    raise Exception(diff_string)
            objectives_to_score = [automl.objective
                                   ] + automl.additional_objectives
            cv_pipeline = None
            try:
                logger.debug(f"\t\t\tFold {i}: starting training")
                cv_pipeline = EngineBase.train_pipeline(
                    pipeline, X_train, y_train, automl.optimize_thresholds,
                    automl.objective)
                logger.debug(f"\t\t\tFold {i}: finished training")
                if automl.optimize_thresholds and pipeline.can_tune_threshold_with_objective(
                        automl.objective
                ) and automl.objective.can_optimize_threshold:
                    logger.debug(
                        f"\t\t\tFold {i}: Optimal threshold found ({cv_pipeline.threshold:.3f})"
                    )
                logger.debug(f"\t\t\tFold {i}: Scoring trained pipeline")
                scores = cv_pipeline.score(X_valid,
                                           y_valid,
                                           objectives=objectives_to_score)
                logger.debug(
                    f"\t\t\tFold {i}: {automl.objective.name} score: {scores[automl.objective.name]:.3f}"
                )
                score = scores[automl.objective.name]
            except Exception as e:
                if automl.error_callback is not None:
                    automl.error_callback(exception=e,
                                          traceback=traceback.format_tb(
                                              sys.exc_info()[2]),
                                          automl=automl,
                                          fold_num=i,
                                          pipeline=pipeline)
                if isinstance(e, PipelineScoreError):
                    nan_scores = {
                        objective: np.nan
                        for objective in e.exceptions
                    }
                    scores = {**nan_scores, **e.scored_successfully}
                    scores = OrderedDict({
                        o.name: scores[o.name]
                        for o in [automl.objective] +
                        automl.additional_objectives
                    })
                    score = scores[automl.objective.name]
                else:
                    score = np.nan
                    scores = OrderedDict(
                        zip([n.name for n in automl.additional_objectives],
                            [np.nan] * len(automl.additional_objectives)))

            ordered_scores = OrderedDict()
            ordered_scores.update({automl.objective.name: score})
            ordered_scores.update(scores)
            ordered_scores.update({"# Training": y_train.shape[0]})
            ordered_scores.update({"# Validation": y_valid.shape[0]})

            evaluation_entry = {
                "all_objective_scores": ordered_scores,
                "score": score,
                'binary_classification_threshold': None
            }
            if is_binary(
                    automl.problem_type
            ) and cv_pipeline is not None and cv_pipeline.threshold is not None:
                evaluation_entry[
                    'binary_classification_threshold'] = cv_pipeline.threshold
            cv_data.append(evaluation_entry)
        training_time = time.time() - start
        cv_scores = pd.Series([fold['score'] for fold in cv_data])
        cv_score_mean = cv_scores.mean()
        logger.info(
            f"\tFinished cross validation - mean {automl.objective.name}: {cv_score_mean:.3f}"
        )
        return {
            'cv_data': cv_data,
            'training_time': training_time,
            'cv_scores': cv_scores,
            'cv_score_mean': cv_score_mean
        }
Ejemplo n.º 12
0
    def validate(self, X, y):
        """Checks if the target data contains missing or invalid values.

        Arguments:
            X (ww.DataTable, pd.DataFrame, np.ndarray): Features. Ignored.
            y (ww.DataColumn, pd.Series, np.ndarray): Target data to check for invalid values.

        Returns:
            dict (DataCheckError): List with DataCheckErrors if any invalid values are found in the target data.

        Example:
            >>> import pandas as pd
            >>> X = pd.DataFrame({"col": [1, 2, 3, 1]})
            >>> y = pd.Series([0, 1, None, None])
            >>> target_check = InvalidTargetDataCheck('binary', 'Log Loss Binary')
            >>> assert target_check.validate(X, y) == {"errors": [{"message": "2 row(s) (50.0%) of target values are null",\
                                                                   "data_check_name": "InvalidTargetDataCheck",\
                                                                   "level": "error",\
                                                                   "code": "TARGET_HAS_NULL",\
                                                                   "details": {"num_null_rows": 2, "pct_null_rows": 50}}],\
                                                       "warnings": [],\
                                                       "actions": [{'code': 'IMPUTE_COL', 'metadata': {'column': None, 'impute_strategy': 'most_frequent', 'is_target': True}}]}
        """
        results = {"warnings": [], "errors": [], "actions": []}

        if y is None:
            results["errors"].append(
                DataCheckError(
                    message="Target is None",
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.TARGET_IS_NONE,
                    details={}).to_dict())
            return results

        y = infer_feature_types(y)
        is_supported_type = y.logical_type in numeric_and_boolean_ww + [
            ww.logical_types.Categorical
        ]
        if not is_supported_type:
            results["errors"].append(
                DataCheckError(
                    message=
                    "Target is unsupported {} type. Valid Woodwork logical types include: {}"
                    .format(
                        y.logical_type, ", ".join([
                            ltype.type_string
                            for ltype in numeric_and_boolean_ww
                        ])),
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.TARGET_UNSUPPORTED_TYPE,
                    details={
                        "unsupported_type": y.logical_type.type_string
                    }).to_dict())
        y_df = _convert_woodwork_types_wrapper(y.to_series())
        null_rows = y_df.isnull()
        if null_rows.all():
            results["errors"].append(
                DataCheckError(message="Target is either empty or fully null.",
                               data_check_name=self.name,
                               message_code=DataCheckMessageCode.
                               TARGET_IS_EMPTY_OR_FULLY_NULL,
                               details={}).to_dict())
            return results
        elif null_rows.any():
            num_null_rows = null_rows.sum()
            pct_null_rows = null_rows.mean() * 100
            results["errors"].append(
                DataCheckError(
                    message="{} row(s) ({}%) of target values are null".format(
                        num_null_rows, pct_null_rows),
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.TARGET_HAS_NULL,
                    details={
                        "num_null_rows": num_null_rows,
                        "pct_null_rows": pct_null_rows
                    }).to_dict())
            impute_strategy = "mean" if is_regression(
                self.problem_type) else "most_frequent"
            results["actions"].append(
                DataCheckAction(DataCheckActionCode.IMPUTE_COL,
                                metadata={
                                    "column": None,
                                    "is_target": True,
                                    "impute_strategy": impute_strategy
                                }).to_dict())

        value_counts = y_df.value_counts()
        unique_values = value_counts.index.tolist()

        if is_binary(self.problem_type) and len(value_counts) != 2:
            if self.n_unique is None:
                details = {"target_values": unique_values}
            else:
                details = {
                    "target_values":
                    unique_values[:min(self.n_unique, len(unique_values))]
                }
            results["errors"].append(
                DataCheckError(
                    message=
                    "Binary class targets require exactly two unique values.",
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.
                    TARGET_BINARY_NOT_TWO_UNIQUE_VALUES,
                    details=details).to_dict())

        if self.problem_type == ProblemTypes.REGRESSION and "numeric" not in y.semantic_tags:
            results["errors"].append(
                DataCheckError(
                    message=
                    "Target data type should be numeric for regression type problems.",
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.TARGET_UNSUPPORTED_TYPE,
                    details={}).to_dict())

        if is_multiclass(self.problem_type):
            if value_counts.min() <= 1:
                least_populated = value_counts[value_counts <= 1]
                details = {
                    "least_populated_class_labels":
                    least_populated.index.tolist()
                }
                results["errors"].append(
                    DataCheckError(
                        message=
                        "Target does not have at least two instances per class which is required for multiclass classification",
                        data_check_name=self.name,
                        message_code=DataCheckMessageCode.
                        TARGET_MULTICLASS_NOT_TWO_EXAMPLES_PER_CLASS,
                        details=details).to_dict())
            if len(unique_values) <= 2:
                details = {"num_classes": len(unique_values)}
                results["errors"].append(
                    DataCheckError(
                        message=
                        "Target has two or less classes, which is too few for multiclass problems.  Consider changing to binary.",
                        data_check_name=self.name,
                        message_code=DataCheckMessageCode.
                        TARGET_MULTICLASS_NOT_ENOUGH_CLASSES,
                        details=details).to_dict())

            num_class_to_num_value_ratio = len(unique_values) / len(y)
            if num_class_to_num_value_ratio >= self.multiclass_continuous_threshold:
                details = {
                    "class_to_value_ratio": num_class_to_num_value_ratio
                }
                results["warnings"].append(
                    DataCheckWarning(
                        message=
                        "Target has a large number of unique values, could be regression type problem.",
                        data_check_name=self.name,
                        message_code=DataCheckMessageCode.
                        TARGET_MULTICLASS_HIGH_UNIQUE_CLASS,
                        details=details).to_dict())

        any_neg = not (y_df > 0).all() if y.logical_type in [
            ww.logical_types.Integer, ww.logical_types.Double
        ] else None
        if any_neg and self.objective.positive_only:
            details = {
                "Count of offending values":
                sum(val <= 0 for val in y_df.values.flatten())
            }
            results["errors"].append(
                DataCheckError(
                    message=
                    f"Target has non-positive values which is not supported for {self.objective.name}",
                    data_check_name=self.name,
                    message_code=DataCheckMessageCode.
                    TARGET_INCOMPATIBLE_OBJECTIVE,
                    details=details).to_dict())

        if X is not None:
            X = infer_feature_types(X)
            X_index = list(X.to_dataframe().index)
            y_index = list(y_df.index)
            X_length = len(X_index)
            y_length = len(y_index)
            if X_length != y_length:
                results["warnings"].append(
                    DataCheckWarning(
                        message=
                        "Input target and features have different lengths",
                        data_check_name=self.name,
                        message_code=DataCheckMessageCode.MISMATCHED_LENGTHS,
                        details={
                            "features_length": X_length,
                            "target_length": y_length
                        }).to_dict())

            if X_index != y_index:
                if set(X_index) == set(y_index):
                    results["warnings"].append(
                        DataCheckWarning(
                            message=
                            "Input target and features have mismatched indices order",
                            data_check_name=self.name,
                            message_code=DataCheckMessageCode.
                            MISMATCHED_INDICES_ORDER,
                            details={}).to_dict())
                else:
                    index_diff_not_in_X = list(set(y_index) -
                                               set(X_index))[:10]
                    index_diff_not_in_y = list(set(X_index) -
                                               set(y_index))[:10]
                    results["warnings"].append(
                        DataCheckWarning(
                            message=
                            "Input target and features have mismatched indices",
                            data_check_name=self.name,
                            message_code=DataCheckMessageCode.
                            MISMATCHED_INDICES,
                            details={
                                "indices_not_in_features": index_diff_not_in_X,
                                "indices_not_in_target": index_diff_not_in_y
                            }).to_dict())

        return results