rna = RnaModule()
rna.setNumberNeuronsImputLayer(30)
rna.setActivationFunctionImputLayer("tanh")
rna.setImputDimNeurons(30)
rna.setNumberNeuronsHiddenLayer(31)
rna.setActivationFunctionHiddenLayer("tanh")
rna.setNumberNeuronsOutputLayer(1)
rna.setActivationFunctionOutputLayer("tanh")
rna_classifier = RnaClassifier()
rna_classifier.setRna(rna)

#PREPROCESSADOR PARA ATRIBUTOS CATEGORICOS
preprocessor = Preprocessor()
preprocessor.setColumnsCategory(['protocol_type', 'service', 'flag'])

evaluate = EvaluateModule()

cross = CrossValidation()

#DEFINIR A ITERACAO QUE O CROSS VALIDATION ESTA
cross.setIteration(1)

cross.setPreprocessor(preprocessor)

cross.setFilePath("../../bases/sub_bases_nslkdd_30_attribute/")

cross.setResultPath("../../results/30_attribute/rna_oculta_31_time/")

cross.setClassifier(rna_classifier)

cross.setEvaluateModule(evaluate)
Ejemplo n.º 2
0
 def __init__(self):
     print("init")
     self.evaluate = EvaluateModule()
 def __init__(self):
     # print("Cross Validation constructor")
     self.evaluate = EvaluateModule()
Ejemplo n.º 4
0
class CrossValidation(object):
    dts = None
    #metodo utilizado para classifacao
    classifier = None

    #conjunto de dados de teste
    teste_sub_data_set = None
    #conjunto de dados de treinamento
    training_sub_data_set = None

    evaluate = None

    #numero de folds
    k = 1

    file_path = ""
    class_name = ""
    #caminho da pasta onde serao salvos os resultados
    result_path = ""
    preprocessor = None

    def __init__(self):
        print("init")
        self.evaluate = EvaluateModule()

    def run(self):
        self.classifier.setResultPath(self.result_path)
        self.classifier.setClass_name(self.class_name)
        self.foldExecution()

    def foldExecution(self):
        i = self.iteration

        for self.iteration in range(i, (self.k + 1)):
            tempo_inicio = time.time()
            self.loadTrainingData()
            self.loadTestData()

            #executa funcoes para transformacao de dados categoricos
            if self.preprocessor:
                self.preprocessor.setDataSet(self.training_sub_data_set)
                self.preprocessor.setTestDataSet(self.teste_sub_data_set)

                self.training_sub_data_set, self.teste_sub_data_set = self.preprocessor.transformCategory(
                )

            #seta dados de treinamento e teste no classificador
            self.classifier.setDataSet(self.training_sub_data_set)
            self.classifier.setTestDataSet(self.teste_sub_data_set)

            #seta iteracao do cross no classficador
            self.classifier.setIteration(self.iteration)
            #executa o processo de treino e teste do classificador
            self.classifier.run()

            del (self.training_sub_data_set)
            self.loadTestData()
            #seta conjunto de dados original de teste e iteracao atual do cross-validation na classe de avaliacao
            self.evaluate.setTestDataSet(self.teste_sub_data_set)
            self.evaluate.setIteration(self.iteration)
            self.evaluate.setClass_name(self.class_name)
            '''
			#verifica quel o metodo de classificacao utilziado 
			if(isinstance(self.classifier, RnaClassifier)):
				print("rna")
				self.evaluate.setResultPath( self.result_path)
			elif(isinstance(self.classifier, KnnClassifier)):
				print("knn")
				self.evaluate.setResultPath(self.result_path)
			elif(isinstance(self.classifier, SvmClassifier)):
				print("svm")
				self.evaluate.setResultPath(self.result_path)
			elif(isinstance(self.classifier, RfClassifier)):
				print("rf")
				self.evaluate.setResultPath(self.result_path)
			elif(isinstance(self.classifier, ClusteredKnnClassifier)):
				print("clustered knn")
				#self.evaluate.setResultPath(self.result_path)
			elif(isinstance(self.classifier, ClusteredDensityKnnClassifier)):
				print("clustered density knn")
				#self.evaluate.setResultPath(self.result_path)
			'''
            if (isinstance(self.classifier, HybridClassifier)):
                print("hybrid")
                self.evaluate.setResultPath(self.result_path +
                                            "final_method_classification/")
            else:
                self.evaluate.setResultPath(self.result_path)

            tempo_execucao = time.time() - tempo_inicio
            self.evaluate.setTempoExecucao(tempo_execucao)
            self.evaluate.setTrainingTime(self.classifier.getTrainingTime())
            self.evaluate.setTestTime(self.classifier.getTestTime())
            #executa metodo de avaliacao
            self.evaluate.run()

    #carrega conjunto de treinamento de acordo coma iteracao atual do cross valiadation
    def loadTrainingData(self):
        for i in range(1, (self.k + 1)):
            if (((self.k + 1) - i) != self.iteration):
                new_sub_data_set = DataSet.loadSubDataSet(self.file_path +
                                                          "sub_data_set_" +
                                                          str(i) + ".csv")

                if (i == 1):
                    self.training_sub_data_set = new_sub_data_set
                else:
                    self.training_sub_data_set = DataSet.concatSubDataSet(
                        self.training_sub_data_set, new_sub_data_set)
                del (new_sub_data_set)

        #self.training_sub_data_set = self.training_sub_data_set.reset_index()
        print(self.training_sub_data_set)

    #carrega conjunto de teste de acordo coma iteracao atual do cross valiadation
    def loadTestData(self):
        self.teste_sub_data_set = DataSet.loadSubDataSet(self.file_path +
                                                         "sub_data_set_" +
                                                         str((self.k + 1) -
                                                             self.iteration) +
                                                         ".csv")
        print(self.teste_sub_data_set)
        #self.teste_sub_data_set = self.teste_sub_data_set.reset_index()
        #print(self.teste_sub_data_set)
        #exit()

    def setIteration(self, iteration):
        self.iteration = iteration

    def setClassifier(self, classifier):
        self.classifier = classifier

    def getClassifier(self):
        return classifier

    def setPreprocessor(self, preprocessor):
        self.preprocessor = preprocessor

    def getPreprocessor(self):
        return preprocessor

    def setEvaluateModule(self, evaluate):
        self.evaluate = evaluate

    def getEvaluateModule(self):
        return evaluate

    def setFilePath(self, file_path):
        self.file_path = file_path

    def setResultPath(self, result_path):
        self.result_path = result_path

    def setK(self, k):
        self.k = k

    def setClass_name(self, class_name):
        self.class_name = class_name
class CrossValidation(object):
    dts = None
    #metodo utilizado para classifacao
    classifier = None

    #conjunto de dados de teste
    testData = None
    #conjunto de dados de treinamento
    trainingData = None

    evaluate = None

    #numero de folds
    numberOfFolds = 10

    file_path = ""

    #caminho da pasta onde serao salvos os resultados
    result_path = ""
    preprocessor = None

    def __init__(self):
        # print("Cross Validation constructor")
        self.evaluate = EvaluateModule()

    def run(self):
        self.classifier.setResultPath(self.result_path)
        self.foldExecution()

    def foldExecution(self):
        i = self.iteration

        for self.iteration in range(i, (self.numberOfFolds + 1)):
            tempo_inicio = time.time()
            self.loadTrainingData()
            self.loadTestData()

            #executa funcoes para transformacao de dados categoricos
            if self.preprocessor:
                self.preprocessor.setDataSet(self.trainingData)
                self.preprocessor.setTestDataSet(self.testData)

                self.trainingData, self.testData = self.preprocessor.transformCategory(
                )

            #seta dados de treinamento e teste no classificador
            self.classifier.setDataSet(self.trainingData)
            self.classifier.setTestDataSet(self.testData)

            #seta iteracao do cross no classficador
            self.classifier.setIteration(self.iteration)
            #executa o processo de treino e teste do classificador
            self.classifier.run()

            del (self.trainingData)
            # self.loadTestData()
            #seta conjunto de dados original de teste e iteracao atual do cross-validation na classe de avaliacao
            self.evaluate.setTestDataSet(self.testData)
            self.evaluate.setIteration(self.iteration)

            #verifica quel o metodo de classificacao utilziado
            if (isinstance(self.classifier, RnaClassifier)):
                print("rna")
                self.evaluate.setResultPath(self.result_path)
            elif (isinstance(self.classifier, KnnClassifier)):
                print("knn")
                # self.evaluate.setResultPath(self.result_path)
            elif (isinstance(self.classifier, ClusteredKnnClassifier)):
                print("clustered knn")
                #self.evaluate.setResultPath(self.result_path)
            elif (isinstance(self.classifier, ClusteredDensityKnnClassifier)):
                print("clustered density knn")
                #self.evaluate.setResultPath(self.result_path)
            elif (isinstance(self.classifier, HybridClassifier)):
                print("hybrid")
                annModel = self.classifier.getRna().getModel()
                self.saveModelToFile(annModel, 'ann')
                self.evaluate.setResultPath(self.result_path +
                                            "final_method_classification/")

            tempo_execucao = time.time() - tempo_inicio
            self.evaluate.setTempoExecucao(tempo_execucao)
            self.evaluate.setTrainingTime(self.classifier.getTrainingTime())
            self.evaluate.setTestTime(self.classifier.getTestTime())
            #executa metodo de avaliacao
            self.evaluate.run()

    #carrega conjunto de treinamento de acordo coma iteracao atual do cross valiadation
    def loadTrainingData(self):
        #exclude current cross validation iteration corresponding fold
        trainFolds = glob.glob(self.file_path + 'fold_[!' +
                               str(self.iteration) + ']*.csv')
        self.trainingData = pd.concat(
            (pd.read_csv(fold) for fold in trainFolds))

    #carrega conjunto de teste de acordo com a iteracao atual do cross validation
    def loadTestData(self):
        self.testData = DataSet.loadSubDataSet(self.file_path + "fold_" +
                                               str(self.iteration) + ".csv")

    def setIteration(self, iteration):
        self.iteration = iteration

    def setClassifier(self, classifier):
        self.classifier = classifier

    def getClassifier(self):
        return classifier

    def setPreprocessor(self, preprocessor):
        self.preprocessor = preprocessor

    def getPreprocessor(self):
        return preprocessor

    def setEvaluateModule(self, evaluate):
        self.evaluate = evaluate

    def getEvaluateModule(self):
        return evaluate

    def setFilePath(self, file_path):
        self.file_path = file_path

    def setResultPath(self, result_path):
        directory = os.path.dirname(result_path)
        if not os.path.exists(directory):
            os.makedirs(directory)

        self.result_path = result_path

    def setK(self, k):
        self.numberOfFolds = k

    def saveModelToFile(self, model, prefix):
        directory = os.path.dirname(self.file_path + 'models/')
        if not os.path.exists(directory):
            os.makedirs(directory)

        fileName = directory + prefix + '_' + str(self.iteration - 1)
        pickle.dump(model, open(fileName, 'wb'))
        print('[' + str(datetime.datetime.now()).split('.')[0] + '] ' +
              fileName + ' saved [')