Ejemplo n.º 1
0
    def compute_psds(self):
        logging.info("Compute psds scores")
        ##########
        # Optional but recommended
        ##########
        # Compute psds scores with multiple thresholds (more accurate). n_thresholds could be increased.
        n_thresholds = 50
        out_nb_frames_1s = self.sample_rate / self.hop_size / self.pooling_time_ratio
        # median_window = max(int(0.45 * out_nb_frames_1s), 1)
        post_processing_fn = [functools.partial(median_filt_1d, filt_span=3)]

        # Example of 5 thresholds: 0.1, 0.3, 0.5, 0.7, 0.9
        list_thresholds = np.arange(1 / (n_thresholds * 2), 1,
                                    1 / n_thresholds)

        prediction_dfs = {}
        for threshold in list_thresholds:
            prediction_dfs[threshold] = self.get_prediction_dataframe(
                post_processing=post_processing_fn,
                threshold=threshold,
                binarization_type="global_threshold",
            )
        pred_thresh = []
        for key in prediction_dfs:
            pred_thresh.append(prediction_dfs[key])

        if len(pred_thresh) == 1:
            pred_thresh = pred_thresh[0]

        # save predictions
        (self.output_dir / "predictions_thresh").mkdir(exist_ok=True)
        for th, pred_df in zip(list_thresholds, pred_thresh):
            pred_df.to_csv(
                self.output_dir / "predictions_thresh" / f"{th}.csv",
                index=False,
                sep="\t",
                float_format="%.3f",
            )

        psds = compute_psds_from_operating_points(pred_thresh,
                                                  self.validation_df,
                                                  self.durations_validation)
        psds_score(psds, filename_roc_curves=self.output_dir / "psds_roc.png")
Ejemplo n.º 2
0
    # Preds with only one value
    valid_predictions = get_predictions(crnn,
                                        validation_dataloader,
                                        many_hot_encoder.decode_strong,
                                        pooling_time_ratio,
                                        median_window=median_window,
                                        save_predictions=predicitons_fname)
    compute_metrics(valid_predictions, validation_labels_df,
                    durations_validation)

    # ##########
    # Optional but recommended
    # ##########
    # Compute psds scores with multiple thresholds (more accurate). n_thresholds could be increased.
    n_thresholds = 50
    # Example of 5 thresholds: 0.1, 0.3, 0.5, 0.7, 0.9
    list_thresholds = np.arange(1 / (n_thresholds * 2), 1, 1 / n_thresholds)
    pred_ss_thresh = get_predictions(crnn,
                                     validation_dataloader,
                                     many_hot_encoder.decode_strong,
                                     pooling_time_ratio,
                                     thresholds=list_thresholds,
                                     median_window=median_window,
                                     save_predictions=predicitons_fname)
    psds = compute_psds_from_operating_points(pred_ss_thresh,
                                              validation_labels_df,
                                              durations_validation)
    psds_score(psds,
               filename_roc_curves=os.path.join(saved_pred_dir,
                                                "figures/psds_roc.png"))
Ejemplo n.º 3
0
    single_predictions = get_predictions(
        params["model"],
        params["dataloader"],
        params["many_hot_encoder"].decode_strong,
        params["pooling_time_ratio"],
        median_window=params["median_window"],
        save_predictions=f_args.save_predictions_path)
    compute_metrics(single_predictions, groundtruth, durations)

    # ##########
    # Optional but recommended
    # ##########
    # Compute psds scores with multiple thresholds (more accurate). n_thresholds could be increased.
    n_thresholds = 50
    # Example of 5 thresholds: 0.1, 0.3, 0.5, 0.7, 0.9
    list_thresholds = np.arange(1 / (n_thresholds * 2), 1, 1 / n_thresholds)
    pred_ss_thresh = get_predictions(
        params["model"],
        params["dataloader"],
        params["many_hot_encoder"].decode_strong,
        params["pooling_time_ratio"],
        thresholds=list_thresholds,
        median_window=params["median_window"],
        save_predictions=f_args.save_predictions_path)
    psds = compute_psds_from_operating_points(pred_ss_thresh, groundtruth,
                                              durations)
    fname_roc = None
    if f_args.save_predictions_path is not None:
        fname_roc = osp.splitext(f_args.save_predictions_path)[0] + "_roc.png"
    psds_score(psds, filename_roc_curves=fname_roc)
Ejemplo n.º 4
0
if __name__ == '__main__':
    groundtruth_path = "../dataset/metadata/validation/validation.tsv"
    durations_path = "../dataset/metadata/validation/validation_durations.tsv"
    # If durations do not exists, audio dir is needed
    groundtruth_audio_path = "../dataset/audio/validation"
    base_prediction_path = "stored_data/MeanTeacher_with_synthetic/predictions/baseline_validation"

    groundtruth = pd.read_csv(groundtruth_path, sep="\t")
    if osp.exists(durations_path):
        meta_dur_df = pd.read_csv(durations_path, sep='\t')
    else:
        meta_dur_df = generate_tsv_wav_durations(groundtruth_audio_path,
                                                 durations_path)

    # Evaluate a single prediction
    single_predictions = pd.read_csv(base_prediction_path + ".tsv", sep="\t")
    compute_metrics(single_predictions, groundtruth, meta_dur_df)

    # Evaluate predictions with multiple thresholds (better). Need a list of predictions.
    prediction_list_path = glob.glob(osp.join(base_prediction_path, "*.tsv"))
    list_predictions = []
    for fname in prediction_list_path:
        pred_df = pd.read_csv(fname, sep="\t")
        list_predictions.append(pred_df)
    psds = compute_psds_from_operating_points(list_predictions, groundtruth,
                                              meta_dur_df)
    psds_score(psds,
               filename_roc_curves=osp.join(base_prediction_path,
                                            "figures/psds_roc.png"))
    gt_df_feat_ss = dataset.initialize_and_get_df(f_args.groundtruth_tsv, gt_audio_dir, f_args.base_dir_ss,
                                                  pattern_ss="_events", nb_files=f_args.nb_files,
                                                  keep_sources=keep_sources)
    params = _load_state_vars(expe_state, gt_df_feat_ss, median_window)
    alpha_norm = 1
    # Preds with only one value (note that in comparison of TestModel, here we do not use a dataloader)
    single_predictions = get_predictions_ss_late_integration(params["model"], params["dataload"],
                                                             params["many_hot_encoder"].decode_strong,
                                                             params["pooling_time_ratio"],
                                                             median_window=params["median_window"],
                                                             save_predictions=f_args.save_predictions_path,
                                                             alpha=alpha_norm)
    compute_metrics(single_predictions, groundtruth, durations)

    # ##########
    # Optional but recommended
    # ##########
    # Compute psds scores with multiple thresholds (more accurate). n_thresholds could be increased.
    n_thresholds = 50
    # Example of 5 thresholds: 0.1, 0.3, 0.5, 0.7, 0.9
    thresholds = np.arange(1 / (n_thresholds * 2), 1, 1 / n_thresholds)
    pred_ss_thresh = get_predictions_ss_late_integration(params["model"], params["dataload"],
                                                         params["many_hot_encoder"].decode_strong,
                                                         params["pooling_time_ratio"],
                                                         thresholds=thresholds,
                                                         median_window=params["median_window"],
                                                         save_predictions=f_args.save_predictions_path)
    psds = compute_psds_from_operating_points(pred_ss_thresh, groundtruth, durations)
    psds_score(psds, filename_roc_curves=osp.splitext(f_args.save_predictions_path)[0] + "_roc.png")