def test_1_call(): import example1 ported_eq(example1.f(3), 3) ported_eq("description" in example1.f.__doc__, True) ported_eq(example1.f.__name__, "f")
delta = 0.025 x = np.arange(min([x0[0],x1[0],x2[0],x_star[0]])-0.5, \ max([x0[0],x1[0],x2[0],x_star[0]])+0.5, \ delta) y = np.arange(min([x0[1],x1[1],x2[1],x_star[1]])-0.5, \ max([x0[1],x1[1],x2[1],x_star[1]])+0.5, \ delta) X, Y = np.meshgrid(x, y) dim = np.shape(X) # Compute function values Xv = X.flatten() Yv = Y.flatten() Input = zip(Xv, Yv) Zv = [] for x in Input: Zv.append(f(x)) # Restore arrays to proper dimensions Z = np.array(Zv).reshape(dim) # Open figure plt.figure() # Plot contour CS = plt.contour(X, Y, Z) plt.clabel(CS, inline=1, fontsize=10) plt.title('Sequence of Iterates, Example 1') # plt.title('Sequence of Iterates, Example 2') plt.plot(x_star[0], x_star[1], 'ok') # optimum plt.plot(x0[0], x0[1], 'ob') # starting point plt.plot(x1[0], x1[1], 'or') plt.plot(x2[0], x2[1], 'og')
if __name__ == "__main__": # # Test ad on an external objective # from ad import gh # from example1 import g # s = 1e-1 # G0 = lambda x: ext_obj(g(adnumber(x)),s) # dG0, _ = gh(G0) # # Return ordinary values # G = lambda x: G0(x).x # dG= lambda x: dG0(x).T # # Evaluate # x0 = np.array([2.5,2.5]) # val = G0(x0) # dif = dG0(x0) # # Run BFGS # from scipy.optimize import minimize # res = minimize(G, x0, method='BFGS', jac=dG0) # Test ad on interior objective from ad import gh from example1 import g, f s = 1e-1 fcn = lambda x: f(x) + log_barrier(g(x)) / 5.0 dfcn, _ = gh(fcn) # Run BFGS from scipy.optimize import minimize x0 = [0, 0] res = minimize(fcn, x0, method='BFGS', jac=dfcn)
return res if __name__ == "__main__": # # Test ad on an external objective # from ad import gh # from example1 import g # s = 1e-1 # G0 = lambda x: ext_obj(g(adnumber(x)),s) # dG0, _ = gh(G0) # # Return ordinary values # G = lambda x: G0(x).x # dG= lambda x: dG0(x).T # # Evaluate # x0 = np.array([2.5,2.5]) # val = G0(x0) # dif = dG0(x0) # # Run BFGS # from scipy.optimize import minimize # res = minimize(G, x0, method='BFGS', jac=dG0) # Test ad on interior objective from ad import gh from example1 import g,f s = 1e-1 fcn = lambda x: f(x) + log_barrier(g(x))/5.0 dfcn, _ = gh(fcn) # Run BFGS from scipy.optimize import minimize x0 = [0,0] res = minimize(fcn, x0, method='BFGS', jac=dfcn)
def test_1_call(self): import example1 eq_(example1.f(3), 3) eq_('description' in example1.f.__doc__, True) eq_(example1.f.__name__, 'f')
def test_1_call(): import example1 assert example1.f(3) == 3 assert "description" in example1.f.__doc__ assert example1.f.__name__ == "f"