Ejemplo n.º 1
0
print('x_test shape:', x_test.shape)

print('Build model...')

model = Sequential()
model.add(Embedding(max_features, embedding_size, input_length=maxlen))
model.add(Dropout(0.25))
model.add(
    Conv1D(filters, kernel_size, padding='valid', activation='relu',
           strides=1))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(LSTM(lstm_output_size))
model.add(Dense(1))
model.add(Activation('sigmoid'))

sw_manager = StopwatchManager(stop_watch, compile_stop_watch)

model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

print('Train...')
model.fit(x_train,
          y_train,
          batch_size=batch_size,
          epochs=epochs,
          validation_data=(x_test, y_test),
          callbacks=[sw_manager])
score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
output.contents = np.array([score, acc])
print('Test score:', score)
Ejemplo n.º 2
0
def train(run_name, start_epoch, stop_epoch, img_w):
    # Input Parameters
    img_h = 64
    words_per_epoch = 1600
    val_split = 0.2
    val_words = int(words_per_epoch * (val_split))

    # Network parameters
    conv_filters = 16
    kernel_size = (3, 3)
    pool_size = 2
    time_dense_size = 32
    rnn_size = 512

    if K.image_data_format() == 'channels_first':
        input_shape = (1, img_w, img_h)
    else:
        input_shape = (img_w, img_h, 1)

    fdir = os.path.dirname(
        get_file('wordlists.tgz',
                 origin='http://www.mythic-ai.com/datasets/wordlists.tgz',
                 untar=True))

    img_gen = TextImageGenerator(monogram_file=os.path.join(fdir, 'wordlist_mono_clean.txt'),
                                 bigram_file=os.path.join(fdir, 'wordlist_bi_clean.txt'),
                                 minibatch_size=32,
                                 img_w=img_w,
                                 img_h=img_h,
                                 downsample_factor=(pool_size**2),
                                 val_split=words_per_epoch - val_words)
    act = 'relu'
    input_data = Input(name='the_input', shape=input_shape, dtype='float32')
    inner = Conv2D(conv_filters,
                   kernel_size,
                   padding='same',
                   activation=act,
                   kernel_initializer='he_normal',
                   name='conv1')(input_data)
    inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner)
    inner = Conv2D(conv_filters,
                   kernel_size,
                   padding='same',
                   activation=act,
                   kernel_initializer='he_normal',
                   name='conv2')(inner)
    inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner)

    conv_to_rnn_dims = (img_w // (pool_size**2), (img_h // (pool_size**2)) * conv_filters)
    inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner)

    # cuts down input size going into RNN:
    inner = Dense(time_dense_size, activation=act, name='dense1')(inner)

    # Two layers of bidirecitonal GRUs
    # GRU seems to work as well, if not better than LSTM:
    gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal',
                name='gru1')(inner)
    gru_1b = GRU(rnn_size,
                 return_sequences=True,
                 go_backwards=True,
                 kernel_initializer='he_normal',
                 name='gru1_b')(inner)
    gru1_merged = add([gru_1, gru_1b])
    gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal',
                name='gru2')(gru1_merged)
    gru_2b = GRU(rnn_size,
                 return_sequences=True,
                 go_backwards=True,
                 kernel_initializer='he_normal',
                 name='gru2_b')(gru1_merged)

    # transforms RNN output to character activations:
    inner = Dense(img_gen.get_output_size(), kernel_initializer='he_normal',
                  name='dense2')(concatenate([gru_2, gru_2b]))
    y_pred = Activation('softmax', name='softmax')(inner)
    Model(inputs=input_data, outputs=y_pred).summary()

    labels = Input(name='the_labels', shape=[img_gen.absolute_max_string_len], dtype='float32')
    input_length = Input(name='input_length', shape=[1], dtype='int64')
    label_length = Input(name='label_length', shape=[1], dtype='int64')
    # Keras doesn't currently support loss funcs with extra parameters
    # so CTC loss is implemented in a lambda layer
    loss_out = Lambda(ctc_lambda_func, output_shape=(1,),
                      name='ctc')([y_pred, labels, input_length, label_length])

    # clipnorm seems to speeds up convergence
    sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)

    model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)

    # the loss calc occurs elsewhere, so use a dummy lambda func for the loss
    model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
    if start_epoch > 0:
        weight_file = os.path.join(OUTPUT_DIR,
                                   os.path.join(run_name, 'weights%02d.h5' % (start_epoch - 1)))
        model.load_weights(weight_file)
    # captures output of softmax so we can decode the output during visualization
    test_func = K.function([input_data], [y_pred])

    viz_cb = VizCallback(run_name, test_func, img_gen.next_val())

    history = TrainingHistory()
    sw_manager = StopwatchManager(stop_watch, compile_stop_watch)

    model.fit_generator(generator=img_gen.next_train(),
                        steps_per_epoch=(words_per_epoch - val_words),
                        epochs=stop_epoch,
                        validation_data=img_gen.next_val(),
                        validation_steps=val_words,
                        callbacks=[viz_cb, img_gen, history, sw_manager],
                        initial_epoch=start_epoch)

    output.contents = np.array([history.loss, history.val_loss])