Ejemplo n.º 1
0
    def training(self):
        print(
            f"Starting {self.runs} Irepa runs for Feedforward Network.......\n"
        )

        # Instantiate a neural net
        net = feedForwardNet(fc1_dims=self.fc1_dims,
                             fc2_dims=self.fc2_dims,
                             fc3_dims=self.fc3_dims)

        # irepa1:
        xtrain, ytrain = self._training_data(terminal_model=None)
        print(f"Starting 0th run .......\n")

        net = self._training(net, xtrain, ytrain)
        torch.save(net, "./nets/net1.pth")
        del xtrain, ytrain

        for i in tqdm(range(self.runs - 1)):
            # Generate training data with neural network inside crocoddyl
            print(f" Run {i + 1} .......\n")

            robot = example_robot_data.loadDoublePendulum()
            robot_model = robot.model
            terminal_model = terminalPendulum(net, robot_model)

            xtrain, ytrain = self._training_data(terminal_model=terminal_model)

            net = self._training(net=net, xtrain=xtrain, ytrain=ytrain)

            torch.save(net, './nets/net' + str(i + 2) + '.pth')

            del terminal_model, xtrain, ytrain

        print("Done........")
Ejemplo n.º 2
0
def cartpole():
    # Loading the double pendulum model
    robot = example_robot_data.loadDoublePendulum()
    robot_model = robot.model

    state = crocoddyl.StateMultibody(robot_model)
    actModel = ActuationModelDoublePendulum(state, actLink=1)

    weights = np.array([1, 1, 1, 1] + [0.1] * 2)
    runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    xRegCost = crocoddyl.CostModelState(
        state, crocoddyl.ActivationModelQuad(state.ndx), state.zero(),
        actModel.nu)
    uRegCost = crocoddyl.CostModelControl(state,
                                          crocoddyl.ActivationModelQuad(1),
                                          actModel.nu)
    xPendCost = CostModelDoublePendulum(
        state, crocoddyl.ActivationModelWeightedQuad(np.matrix(weights).T),
        actModel.nu)

    dt = 1e-2

    runningCostModel.addCost("uReg", uRegCost, 1e-4 / dt)
    runningCostModel.addCost("xGoal", xPendCost, 1e-5 / dt)
    terminalCostModel.addCost("xGoal", xPendCost, 1e4)

    runningModel = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, runningCostModel), dt)
    terminalModel = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, terminalCostModel), dt)

    return runningModel, terminalModel
Ejemplo n.º 3
0
def solver(starting_condition, T=30, precision=1e-9, maxiters=1000):
    """Solve one pendulum problem"""
    robot = example_robot_data.loadDoublePendulum()
    robot_model = robot.model

    state = crocoddyl.StateMultibody(robot_model)
    actModel = ActuationModelDoublePendulum(state, actLink=1)

    weights = np.array([1.5, 1.5, 1, 1] + [0.1] * 2)
    runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    dt = 1e-2

    xRegCost = crocoddyl.CostModelState(
        state, crocoddyl.ActivationModelQuad(state.ndx), state.zero(),
        actModel.nu)

    uRegCost = crocoddyl.CostModelControl(state,
                                          crocoddyl.ActivationModelQuad(1),
                                          actModel.nu)
    xPendCost = CostModelDoublePendulum(
        state, crocoddyl.ActivationModelWeightedQuad(weights), actModel.nu)

    runningCostModel.addCost("uReg", uRegCost, 1e-4 / dt)
    runningCostModel.addCost("xGoal", xPendCost, 1e-5 / dt)

    runningModel = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, runningCostModel), dt)

    terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    terminalCostModel.addCost("xGoal", xPendCost, 1e4)
    terminal_model = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, terminalCostModel), dt)

    problem = crocoddyl.ShootingProblem(starting_condition, [runningModel] * T,
                                        terminal_model)

    fddp = crocoddyl.SolverFDDP(problem)
    fddp.th_stop = precision

    fddp.solve([], [], maxiters)
    def optimalSolution(init_states: Union[list, np.ndarray, torch.Tensor],
                        terminal_model: crocoddyl.ActionModelAbstract = None,
                        horizon: int = 150,
                        precision: float = 1e-9,
                        maxiters: int = 1000,
                        use_fddp: bool = True):
        """Solve double pendulum problem with the given terminal model for the given position
        
        Parameters
        ----------
        init_states   : list or array or tensor
                            These are the initial, starting configurations for the double pendulum
        
        terminal_model: crocoddyl.ActionModelAbstract
                            The terminal model to be used to solve the problem
                            
        horizon       : int
                            Time horizon for the running model
                            
        precision     : float
                            precision for ddp.th_stop
                            
        maxiters      : int
                            Maximum iterations allowed for the problem
                            
        use_fddp      : boolean
                            Solve using ddp or fddp
        
        Returns
        --------
        
        ddp           : crocoddyl.Solverddp
                            the optimal ddp or fddp of the prblem
        """

        if isinstance(init_states, torch.Tensor):
            init_states = init_states.numpy()
        init_states = np.atleast_2d(init_states)

        solutions = []

        for init_state in init_states:
            robot = example_robot_data.loadDoublePendulum()
            robot_model = robot.model

            state = crocoddyl.StateMultibody(robot_model)
            actModel = ActuationModelDoublePendulum(state, actLink=1)

            weights = np.array([1.5, 1.5, 1, 1] + [0.1] * 2)
            runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
            dt = 1e-2

            xRegCost = crocoddyl.CostModelState(
                state, crocoddyl.ActivationModelQuad(state.ndx), state.zero(),
                actModel.nu)

            uRegCost = crocoddyl.CostModelControl(
                state, crocoddyl.ActivationModelQuad(1), actModel.nu)
            xPendCost = CostModelDoublePendulum(
                state, crocoddyl.ActivationModelWeightedQuad(weights),
                actModel.nu)

            runningCostModel.addCost("uReg", uRegCost, 1e-4 / dt)
            runningCostModel.addCost("xGoal", xPendCost, 1e-5 / dt)

            runningModel = crocoddyl.IntegratedActionModelEuler(
                crocoddyl.DifferentialActionModelFreeFwdDynamics(
                    state, actModel, runningCostModel), dt)

            if terminal_model is None:
                terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
                terminalCostModel.addCost("xGoal", xPendCost, 1e4)
                terminal_model = crocoddyl.IntegratedActionModelEuler(
                    crocoddyl.DifferentialActionModelFreeFwdDynamics(
                        state, actModel, terminalCostModel), dt)

            problem = crocoddyl.ShootingProblem(init_state,
                                                [runningModel] * horizon,
                                                terminal_model)
            if use_fddp:
                fddp = crocoddyl.SolverFDDP(problem)
            else:
                fddp = crocoddyl.SolverDDP(problem)

            fddp.th_stop = precision

            fddp.solve([], [], maxiters)

            solutions.append(fddp)
        return solutions
Ejemplo n.º 5
0
import os
import sys

import crocoddyl
import numpy as np
import example_robot_data
from crocoddyl.utils.pendulum import CostModelDoublePendulum, ActuationModelDoublePendulum

WITHDISPLAY = 'display' in sys.argv or 'CROCODDYL_DISPLAY' in os.environ
WITHPLOT = 'plot' in sys.argv or 'CROCODDYL_PLOT' in os.environ

# Loading the double pendulum model
robot = example_robot_data.loadDoublePendulum()
robot_model = robot.model

state = crocoddyl.StateMultibody(robot_model)
actModel = ActuationModelDoublePendulum(state, actLink=1)

weights = np.array([1, 1, 1, 1] + [0.1] * 2)
runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
xRegCost = crocoddyl.CostModelState(state,
                                    crocoddyl.ActivationModelQuad(state.ndx),
                                    state.zero(), actModel.nu)
uRegCost = crocoddyl.CostModelControl(state, crocoddyl.ActivationModelQuad(1),
                                      actModel.nu)
xPendCost = CostModelDoublePendulum(
    state, crocoddyl.ActivationModelWeightedQuad(weights), actModel.nu)

dt = 1e-2
Ejemplo n.º 6
0
def solve_problem(terminal_model=None,
                  initial_configuration=None,
                  horizon: int = 100,
                  precision: float = 1e-9,
                  maxiters: int = 1000):
    """
    Solve the problem for a given initial_position.
    
    @params:
        1: terminal_model    = Terminal model with neural network inside it, for the crocoddyl problem.
                               If none, then Crocoddyl Integrated Action Model will be used as terminal model.
        
        2: initial_configuration = initial position for the unicycle, 
                                    either a list or a numpy array or a tensor.
        
        3: horizon           = Time horizon for the unicycle. Defaults to 100
        
        4: stop              = ddp.th_stop. Defaults to 1e-9
        
        5: maxiters          = maximum iterations allowed for crocoddyl.Defaults to 1000

        
    @returns:
        ddp
    """

    if isinstance(initial_configuration, list):
        initial_configuration = np.array(initial_configuration)

    elif isinstance(initial_configuration, torch.Tensor):
        initial_configuration = initial_configuration.numpy()

    # Loading the double pendulum model
    robot = example_robot_data.loadDoublePendulum()
    robot_model = robot.model

    state = crocoddyl.StateMultibody(robot_model)
    actModel = ActuationModelDoublePendulum(state, actLink=1)

    weights = np.array([1, 1, 1, 1] + [0.1] * 2)
    runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    xRegCost = crocoddyl.CostModelState(
        state, crocoddyl.ActivationModelQuad(state.ndx), state.zero(),
        actModel.nu)

    uRegCost = crocoddyl.CostModelControl(state,
                                          crocoddyl.ActivationModelQuad(1),
                                          actModel.nu)

    xPendCost = CostModelDoublePendulum(
        state, crocoddyl.ActivationModelWeightedQuad(np.matrix(weights).T),
        actModel.nu)

    dt = 1e-2

    runningCostModel.addCost("uReg", uRegCost, 1e-4 / dt)
    runningCostModel.addCost("xGoal", xPendCost, 1e-5 / dt)

    runningModel = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, runningCostModel), dt)

    if terminal_model is None:
        terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
        terminalCostModel.addCost("xGoal", xPendCost, 1e4)
        terminal_model = crocoddyl.IntegratedActionModelEuler(
            crocoddyl.DifferentialActionModelFreeFwdDynamics(
                state, actModel, terminalCostModel), dt)

    # Creating the shooting problem and the FDDP solver
    problem = crocoddyl.ShootingProblem(initial_configuration.T,
                                        [runningModel] * horizon,
                                        terminal_model)

    fddp = crocoddyl.SolverFDDP(problem)

    fddp.th_stop = precision

    fddp.solve([], [], maxiters)

    return fddp