Ejemplo n.º 1
0
 def all_data(self, partition_proportions=None, seed=None):
     if not self._loaded_images:
         self.load_all_images()
         while not self.check_loaded_images(600):
             time.sleep(5)
     data, targets = [], []
     for k, c in enumerate(sorted(self._loaded_images)):
         data += list(self._loaded_images[c].values())
         targets += [k] * 600
     if self.info['one_hot_enc']:
         targets = em.to_one_hot_enc(targets,
                                     dimension=len(self._loaded_images))
     _dts = [
         em.Dataset(data=np.stack(data),
                    target=np.array(targets),
                    name='MiniImagenet_full')
     ]
     if seed:
         np.random.seed(seed)
     if partition_proportions:
         _dts = redivide_data(
             _dts,
             partition_proportions=partition_proportions,
             shuffle=True)
     return em.Datasets.from_list(_dts)
Ejemplo n.º 2
0
        def generate_datasets(self,
                              rand=None,
                              num_classes=None,
                              num_examples=None,
                              wait_for_n_min=None):

            rand = em.get_rand_state(rand)

            if wait_for_n_min:
                import time
                while not self.check_loaded_images(wait_for_n_min):
                    time.sleep(5)

            if not num_examples: num_examples = self.kwargs['num_examples']
            if not num_classes: num_classes = self.kwargs['num_classes']

            clss = self._loaded_images if self._loaded_images else self.info[
                'classes']

            random_classes = rand.choice(list(clss.keys()),
                                         size=(num_classes, ),
                                         replace=False)
            rand_class_dict = {rnd: k for k, rnd in enumerate(random_classes)}

            _dts = []
            for ns in em.as_tuple_or_list(num_examples):
                classes = balanced_choice_wr(random_classes, ns, rand)

                all_images = {cls: list(clss[cls]) for cls in classes}
                data, targets, sample_info = [], [], []
                for c in classes:
                    rand.shuffle(all_images[c])
                    img_name = all_images[c][0]
                    all_images[c].remove(img_name)
                    sample_info.append({'name': img_name, 'label': c})

                    if self._loaded_images:
                        data.append(clss[c][img_name])
                    else:
                        from scipy.misc import imread, imresize
                        data.append(
                            imresize(imread(join(self.info['base_folder'],
                                                 join(c, img_name)),
                                            mode='RGB'),
                                     size=(self.info['resize'],
                                           self.info['resize'], 3)) / 255.)
                    targets.append(rand_class_dict[c])

                if self.info['one_hot_enc']:
                    targets = em.to_one_hot_enc(targets, dimension=num_classes)

                _dts.append(
                    em.Dataset(data=np.array(np.stack(data)),
                               target=targets,
                               sample_info=sample_info,
                               info={'all_classes': random_classes}))
            return em.Datasets.from_list(_dts)
Ejemplo n.º 3
0
        def generate_datasets(self,
                              rand=None,
                              num_classes=None,
                              num_examples=None):
            rand = em.get_rand_state(rand)

            if not num_examples: num_examples = self.kwargs['num_examples']
            if not num_classes: num_classes = self.kwargs['num_classes']

            clss = self._loaded_images if self._loaded_images else self.info[
                'classes']

            random_classes = rand.choice(list(clss.keys()),
                                         size=(num_classes, ),
                                         replace=False)
            rand_class_dict = {rnd: k for k, rnd in enumerate(random_classes)}

            _dts = []
            for ns in em.as_tuple_or_list(num_examples):
                classes = balanced_choice_wr(random_classes, ns, rand)

                all_images = {cls: list(clss[cls]) for cls in classes}
                data, targets, sample_info = [], [], []
                for c in classes:
                    rand.shuffle(all_images[c])
                    img_name = all_images[c][0]
                    all_images[c].remove(img_name)
                    sample_info.append({'name': img_name, 'label': c})
                    data.append(clss[c][img_name])
                    targets.append(rand_class_dict[c])

                if self.info['one_hot_enc']:
                    targets = em.to_one_hot_enc(targets, dimension=num_classes)

                _dts.append(
                    em.Dataset(data=np.array(np.stack(data)),
                               target=targets,
                               sample_info=sample_info,
                               info={'all_classes': random_classes}))
            return em.Datasets.from_list(_dts)