Ejemplo n.º 1
0
    }

    experimenter = Experimenter()
    experimenter.config_gpu()

    experimenter.addSamplingApproach(Cosine)
    experimenter.addSamplingApproach(TF_IDF)
    experimenter.addSamplingApproach(ARM)
    experimenter.addSamplingApproach(Random)

    experimenter.addMaxRejection(TotalLimit)
    experimenter.addMaxRejection(UniqueLimit)
    experimenter.addMaxRejection(Q3Total)
    experimenter.addMaxRejection(Q3Unique)

    experimenter.setModel(NeuMF)
    experimenter.setParameterFiles(files)
    experimenter.execute()
    """
    learning_rate = [0.001,0.005,0.0001,0.0005]
    latent_factors = [10,20,30,40,50]

    for l_r in learning_rate:
        for factors in latent_factors:
            files = {}
            files["ciaodvd-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            files["movietweetings-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            files["ml-100k-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            experimenter.setModel(NeuMF)
            experimenter.setParameterFiles(files)
            experimenter.execute()
Ejemplo n.º 2
0
    }

    experimenter = Experimenter()
    experimenter.config_gpu()

    experimenter.addSamplingApproach(Cosine)
    experimenter.addSamplingApproach(TF_IDF)
    experimenter.addSamplingApproach(ARM)
    experimenter.addSamplingApproach(Random)

    experimenter.addMaxRejection(TotalLimit)
    experimenter.addMaxRejection(UniqueLimit)
    experimenter.addMaxRejection(Q3Total)
    experimenter.addMaxRejection(Q3Unique)

    experimenter.setModel(BPRMF)
    experimenter.setParameterFiles(files)
    experimenter.execute()
    """

    learning_rate = [0.001,0.005,0.0001,0.0005]
    latent_factors = [10,20,30,40,50]

    for l_r in learning_rate:
        for factors in latent_factors:
            files = {}
            files["ciaodvd-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.01,"batch_size": 256,"num_factor": factors}
            files["movietweetings-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.01,"batch_size": 256,"num_factor": factors}
            files["ml-100k-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.01,"batch_size": 256,"num_factor": factors}
            experimenter.setModel(BPRMF)
            experimenter.setParameterFiles(files)
Ejemplo n.º 3
0
    }

    experimenter = Experimenter()
    experimenter.config_gpu()

    experimenter.addSamplingApproach(Cosine)
    experimenter.addSamplingApproach(TF_IDF)
    experimenter.addSamplingApproach(ARM)
    experimenter.addSamplingApproach(Random)

    experimenter.addMaxRejection(TotalLimit)
    experimenter.addMaxRejection(UniqueLimit)
    experimenter.addMaxRejection(Q3Total)
    experimenter.addMaxRejection(Q3Unique)

    experimenter.setModel(MLP)
    experimenter.setParameterFiles(files)
    experimenter.execute()
    """
    learning_rate = [0.001,0.005,0.0001,0.0005]
    latent_factors = [10,20,30,40,50]

    for l_r in learning_rate:
        for factors in latent_factors:
            files = {}
            files["ciaodvd-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            files["movietweetings-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            files["ml-100k-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            experimenter.setModel(MLP)
            experimenter.setParameterFiles(files)
            experimenter.execute()"""
Ejemplo n.º 4
0
    }

    experimenter = Experimenter()
    experimenter.config_gpu()

    experimenter.addSamplingApproach(Cosine)
    experimenter.addSamplingApproach(TF_IDF)
    experimenter.addSamplingApproach(ARM)
    experimenter.addSamplingApproach(Random)

    experimenter.addMaxRejection(TotalLimit)
    experimenter.addMaxRejection(UniqueLimit)
    experimenter.addMaxRejection(Q3Total)
    experimenter.addMaxRejection(Q3Unique)

    experimenter.setModel(GMF)
    experimenter.setParameterFiles(files)
    experimenter.execute()
    """
    learning_rate = [0.001,0.005,0.0001,0.0005]
    latent_factors = [10,20,30,40,50]

    for l_r in learning_rate:
        for factors in latent_factors:
            files = {}
            files["ciaodvd-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            files["movietweetings-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            files["ml-100k-gte.csv"] = {"learning_rate": l_r,"reg_rate": 0.0,"batch_size": 256,"num_factor": factors}
            experimenter.setModel(GMF)
            experimenter.setParameterFiles(files)
            experimenter.execute()"""