def show_abstraction1_vs_abstraction2_wrt_sum_of_query_times(
        exp_result_dirname,
        abstraction_1="_A_complete_",
        abstraction_2="_A_heuristic_alg2_",
        xscale=None,
        yscale=None):
    cegarabou_methods = copy.deepcopy(BEST_CEGARABOU_METHODS)
    if "A" in cegarabou_methods:
        cegarabou_methods.pop("A")
    cegarabou_df = read_cegarabou_df(exp_result_dirname=exp_result_dirname,
                                     best_cegarabou_methods=cegarabou_methods)
    cegarabou_df["refinement_sequence_length"] = cegarabou_df.filenames.apply(
        lambda s: int(s.split("__RS_")[1].split("__AS_")[0]))
    print_num_of_refine_sequences(df=cegarabou_df)
    cegarabou_df["num_of_refine_steps"] = cegarabou_df[
        "num_of_refine_steps"] * cegarabou_df["refinement_sequence_length"]
    print(f"cegarabou_df.columns={cegarabou_df.columns}")
    print_abstraction_time(df=cegarabou_df)
    print_refinement_time(df=cegarabou_df)
    show_col_vs_col_wrt_category(df=cegarabou_df,
                                 left_col=abstraction_1,
                                 right_col=abstraction_2,
                                 category="ar_times",
                                 cat_aggregation_func=get_sum_times_func(),
                                 aggregated_name="Sum of Query Times",
                                 xscale=xscale,
                                 yscale=yscale,
                                 min_x_limit=0,
                                 max_x_limit=None,
                                 min_y_limit=0,
                                 max_y_limit=None)
def show_rs_vs_rs_wrt_sum_of_query_times(exp_result_dirname,
                                         rs_1=USED_RS_1,
                                         rs_2=USED_RS_2,
                                         xscale=None,
                                         yscale=None):
    cegarabou_methods = copy.deepcopy(BEST_CEGARABOU_METHODS)
    if "RS" in cegarabou_methods:
        cegarabou_methods.pop("RS")
    cegarabou_df = read_cegarabou_df(exp_result_dirname=exp_result_dirname,
                                     best_cegarabou_methods=cegarabou_methods)
    refinement_sequence_length = 100
    cegarabou_df["num_of_refine_steps"] = cegarabou_df[
        "num_of_refine_steps"].apply(lambda x: refinement_sequence_length * x)
    show_col_vs_col_wrt_category(df=cegarabou_df,
                                 left_col="_RS_{}_".format(rs_1),
                                 right_col="_RS_{}_".format(rs_2),
                                 category="ar_times",
                                 cat_aggregation_func=get_sum_times_func(),
                                 aggregated_name="Sum of Query Times",
                                 xscale=xscale,
                                 yscale=yscale,
                                 min_x_limit=0,
                                 max_x_limit=None,
                                 min_y_limit=0,
                                 max_y_limit=None)
def show_cegar_vs_cetar_wrt_last_time(exp_result_dirname):
    cegarabou_df = read_cegarabou_df(exp_result_dirname)
    print(cegarabou_df.columns)

    cegar_df = cegarabou_df[cegarabou_df.filenames.str.contains("__R_cegar__")]
    cetar_df = cegarabou_df[cegarabou_df.filenames.str.contains("__R_cetar__")]
    print(cegar_df.shape)
    print(cetar_df.shape)
    assert (cegar_df.shape[0] + cetar_df.shape[0] == cegarabou_df.shape[0])

    replace_func = lambda filename: filename.replace("__R_cegar__",
                                                     "__R_cetar__")
    cegar_df["replace_filenames"] = cegar_df.filenames.apply(replace_func)
    cegar_cetar_df = cegar_df.merge(right=cetar_df,
                                    left_on="replace_filenames",
                                    right_on="filenames",
                                    suffixes=["_cegar", "_cetar"])
    col_x = "last_query_time_cegar"
    col_y = "last_query_time_cetar"

    show_df_col_vs_col(cegar_cetar_df,
                       col_x=col_x,
                       col_y=col_y,
                       color="b",
                       min_x_limit=0,
                       max_x_limit=100,
                       min_y_limit=0,
                       max_y_limit=75,
                       title="scatter {} vs {}".format(col_x, col_y),
                       set_timeouts_line=True)
def show_complete_vs_heuristic_last_time(exp_result_dirname):
    cegarabou_df = read_cegarabou_df(exp_result_dirname)
    complete_df = cegarabou_df[cegarabou_df.filenames.str.contains(
        "__A_complete_")]
    heuristic_df = cegarabou_df[cegarabou_df.filenames.str.contains(
        "__A_heuristic_")]
    print(complete_df.shape)
    print(heuristic_df.shape)
    print(complete_df.shape[0] +
          heuristic_df.shape[0] == cegarabou_df.shape[0])

    replace_func = lambda filename: filename.replace("__A_complete_",
                                                     "__A_heuristic_")
    complete_df["replace_filenames"] = complete_df.filenames.apply(
        replace_func)
    complete_heuristic_df = complete_df.merge(
        right=heuristic_df,
        left_on="replace_filenames",
        right_on="filenames",
        suffixes=["_complete", "_heuristic"])
    col_x = "last_query_time_complete"
    col_y = "last_query_time_heuristic"

    show_df_col_vs_col(complete_heuristic_df,
                       col_x=col_x,
                       col_y=col_y,
                       color="b",
                       min_x_limit=0,
                       max_x_limit=1000,
                       min_y_limit=0,
                       max_y_limit=1000,
                       xscale="log",
                       yscale="log",
                       title="scatter {} vs {}".format(col_x, col_y))
def show_complete_vs_heuristic_wrt_num_of_queries(exp_result_dirname,
                                                  xscale=None,
                                                  yscale=None):
    cegarabou_methods = copy.deepcopy(BEST_CEGARABOU_METHODS)
    if "A" in cegarabou_methods:
        cegarabou_methods.pop("A")
    cegarabou_df = read_cegarabou_df(exp_result_dirname=exp_result_dirname,
                                     best_cegarabou_methods=cegarabou_methods)
    cegarabou_df["refinement_sequence_length"] = cegarabou_df.filenames.apply(
        lambda s: int(s.split("__RS_")[1].split("__AS_")[0]))
    cegarabou_df["num_of_refine_steps"] = cegarabou_df[
        "num_of_refine_steps"] * cegarabou_df["refinement_sequence_length"]
    show_col_vs_col_wrt_category(df=cegarabou_df,
                                 left_col="_A_complete_",
                                 right_col="_A_heuristic_",
                                 category="num_of_refine_steps",
                                 aggregated_name="#Refinement Steps",
                                 xscale=xscale,
                                 yscale=yscale,
                                 min_x_limit=0,
                                 max_x_limit=None,
                                 min_y_limit=0,
                                 max_y_limit=None)
def show_cegar_vs_cetar_wrt_num_of_queries(exp_result_dirname,
                                           xscale=None,
                                           yscale=None):
    cegarabou_methods = copy.deepcopy(BEST_CEGARABOU_METHODS)
    if "R" in cegarabou_methods:
        cegarabou_methods.pop("R")
    cegarabou_df = read_cegarabou_df(exp_result_dirname=exp_result_dirname,
                                     best_cegarabou_methods=cegarabou_methods,
                                     exp_params=EXP_PARAMS)
    refinement_sequence_length = 100
    cegarabou_df["num_of_refine_steps"] = cegarabou_df[
        "num_of_refine_steps"].apply(lambda x: refinement_sequence_length * x)
    show_col_vs_col_wrt_category(df=cegarabou_df,
                                 left_col="_R_cegar_",
                                 right_col="_R_cetar_",
                                 category="num_of_refine_steps",
                                 aggregated_name="#Refinement Steps",
                                 xscale=xscale,
                                 yscale=yscale,
                                 min_x_limit=0,
                                 max_x_limit=None,
                                 min_y_limit=0,
                                 max_y_limit=None)
def show_as_vs_as_wrt_num_of_queries(exp_result_dirname,
                                     as_1=USED_AS_1,
                                     as_2=USED_AS_2,
                                     xscale=None,
                                     yscale=None):
    cegarabou_methods = copy.deepcopy(BEST_CEGARABOU_METHODS)
    if "AS" in cegarabou_methods:
        cegarabou_methods.pop("AS")
    cegarabou_df = read_cegarabou_df(exp_result_dirname=exp_result_dirname,
                                     best_cegarabou_methods=cegarabou_methods)
    refinement_sequence_length = 100
    cegarabou_df["num_of_refine_steps"] = cegarabou_df[
        "num_of_refine_steps"].apply(lambda x: refinement_sequence_length * x)
    show_col_vs_col_wrt_category(df=cegarabou_df,
                                 left_col="_AS_{}_".format(as_1),
                                 right_col="_AS_{}_".format(as_2),
                                 category="num_of_refine_steps",
                                 aggregated_name="#Refinement Steps",
                                 xscale=xscale,
                                 yscale=yscale,
                                 min_x_limit=0,
                                 max_x_limit=None,
                                 min_y_limit=0,
                                 max_y_limit=None)
Ejemplo n.º 8
0
def validate_equal_results_marabou_cegarabou(exp_name="2020-01-24"):
    df_marabou = read_marabou_df(exp_result_dirname=exp_name)
    df_cegarabou = read_cegarabou_df(exp_result_dirname=exp_name)
    verify_equal_query_results(marabou_df=df_marabou,
                               cegarabou_df=df_cegarabou)