]]

#pick which objects to include
#will be further refined by the name_to_id_map loaded later
#excluded_cids = [53,76,78,79,82,86,16,   1,2,18,21,25]
#excluded_cids = [53,76,78,79,82,86,16,33,32,   18,50,79,94,96] #10, 5,11,12,14]
excluded_cids = []
chosen_ids =  [x for x in range(0,32) if x not in excluded_cids]
#val_chosen_ids = [[4,5,17,19,23],[18,50,79,94,96]] #, [5,10,17]]#chosen_ids #range(0,28)#for validation testing
#val_chosen_ids = [[18,50,79,94,96,5,10,12,14,21],[5,10,12,14,21]] #, [5,10,17]]#chosen_ids #range(0,28)#for validation testing
val_chosen_ids = [[1,5,9,13,17,21,25,28,29],[28,29]] #, [5,10,17]]#chosen_ids #range(0,28)#for validation testing

max_difficulty = 4 

#get a map from instance name to id, and back
id_to_name = GetDataSet.get_class_id_to_name_dict(data_path, file_name=id_map_fname)
name_to_id = {}
for cid in id_to_name.keys():
    name_to_id[id_to_name[cid]] = cid


##prepare target images (gather paths to the images)
#
target_images ={} 
#means to subtract from each channel of target image
means = np.array([[[102.9801, 115.9465, 122.7717]]])

#path that holds dirs of all targets
#i.e. target_path/target_0/* has one type of target image for each object
#     target_path/target_1/* has another type of target image
#type of target image can mean different things, 
    'Gen_004_2',
]

#pick which objects to include
#will be further refined by the name_to_id_map loaded later
#excluded_cids = [53,76,78,79,82,86,16,   1,2,18,21,25]
excluded_cids = [53, 76, 78, 79, 82, 86, 16, 33, 32, 10, 5, 11, 12, 14]
chosen_ids = [x for x in range(0, 111) if x not in excluded_cids]
val_chosen_ids = [[4, 5, 17, 19], [
    5, 11, 12, 14
]]  #, [5,10,17]]#chosen_ids #range(0,28)#for validation testing

max_difficulty = 4

#get a map from instance name to id, and back
id_to_name = GetDataSet.get_class_id_to_name_dict(data_path)
name_to_id = {}
for cid in id_to_name.keys():
    name_to_id[id_to_name[cid]] = cid

##prepare target images (gather paths to the images)
#
target_images = {}
#means to subtract from each channel of target image
means = np.array([[[102.9801, 115.9465, 122.7717]]])

#path that holds dirs of all targets
#i.e. target_path/target_0/* has one type of target image for each object
#     target_path/target_1/* has another type of target image
#type of target image can mean different things,
#probably different type is different view
Ejemplo n.º 3
0
#pick which objects to include
#will be further refined by the name_to_id_map loaded later
#excluded_cids = [53,76,78,79,82,86,16,   1,2,18,21,25]
#excluded_cids = [53,76,78,79,82,86,16,33,32,   1,2,18,21,25]
excluded_cids = []
chosen_ids = [x for x in range(0, 32) if x not in excluded_cids]
val_chosen_ids = [
    chosen_ids
]  # [[1,2,18,21,25]] #, [5,10,17]]#chosen_ids #range(0,28)#for validation testing

max_difficulty = 4

map_fname = 'all_instance_id_map.txt'
#get a map from instance name to id, and back
id_to_name = GetDataSet.get_class_id_to_name_dict(data_path,
                                                  file_name=map_fname)
name_to_id = {}
for cid in id_to_name.keys():
    name_to_id[id_to_name[cid]] = cid

##prepare target images (gather paths to the images)
#
target_images = {}
#means to subtract from each channel of target image
means = np.array([[[102.9801, 115.9465, 122.7717]]])

#path that holds dirs of all targets
#i.e. target_path/target_0/* has one type of target image for each object
#     target_path/target_1/* has another type of target image
#type of target image can mean different things,
#probably different type is different view
Ejemplo n.º 4
0
    #target_path = '/net/bvisionserver3/playpen/ammirato/Data/instance_detection_targets/sygen_many_bb_similar_targets/'
    target_path = '/net/bvisionserver3/playpen/ammirato/Data/instance_detection_targets/AVD_BB_exact_few/'
    output_dir = '/net/bvisionserver3/playpen/ammirato/Data/Detections/FasterRCNN_AVD/'

    scene_list = [
        'Home_003_1',
        #'Home_003_2',
        #'test',
        #'Office_001_1'
    ]
    chosen_ids = [1]  #range(28)

    #CREATE TRAIN/TEST splits
    dataset = GetDataSet.get_fasterRCNN_AVD(data_path,
                                            scene_list,
                                            preload=False,
                                            chosen_ids=chosen_ids,
                                            by_box=False,
                                            fraction_of_no_box=0)

    #create train/test loaders, with CUSTOM COLLATE function
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=True,
                                             collate_fn=AVD.collate)

    id_to_name = GetDataSet.get_class_id_to_name_dict(data_path)
    name_to_id = {}
    for cid in id_to_name.keys():
        name_to_id[id_to_name[cid]] = cid

    target_images = get_target_images(target_path,
Ejemplo n.º 5
0
             'Home_014_1',
             'Home_014_2',
             'Office_001_1'

             #'Home_101_1',
             #'Home_102_1',

             #'test',
             ]
    chosen_ids = [5,10,12,14,21,28]#range(28)

    #CREATE TRAIN/TEST splits
    dataset = GetDataSet.get_fasterRCNN_AVD(data_path,
                                            scene_list,
                                            preload=False,
                                            chosen_ids=chosen_ids, 
                                            by_box=False,
                                            fraction_of_no_box=1,
                                            bn_normalize=use_torch_vgg)



    #CREATE TRAIN/TEST splits
#    dataset = GetDataSet.get_fasterRCNN_GMU(data_path,
#                                            scene_list,
#                                            preload=False,
#                                            chosen_ids=[6],#chosen_ids, 
#                                            by_box=False,
#                                            fraction_of_no_box=0,
#                                            bn_normalize=use_torch_vgg)
#