Ejemplo n.º 1
0
def dice_fps(args):
    exps = expman.gather(args.run).filter(args.filter)

    mask_metrics = exps.collect('test_pred/mask_metrics.csv')
    mask_metrics = mask_metrics.groupby('exp_name').dice.max()

    time_metrics = exps.collect('timings.csv')
    time_metrics = time_metrics.rename({
        'Unnamed: 0': 'metrics',
        '0': 'value'
    },
                                       axis=1)
    time_metrics = time_metrics.pivot_table(index='exp_name',
                                            columns='metrics',
                                            values='value')

    flops_nparams = exps.collect('flops_nparams.csv')
    flops_nparams = flops_nparams.set_index('exp_name')[['flops', 'nparams']]

    table = pd.concat(
        (time_metrics, mask_metrics, flops_nparams),
        axis=1)[['dice', 'fps', 'throughput', 'flops', 'nparams']]
    table['dice'] = table.dice.map('{:.1%}'.format)
    table['fps'] = table.fps.map('{:.1f}'.format)
    table['throughput'] = (table.throughput * 1000).map('{:.1f}ms'.format)
    table['flops'] = (table.flops / 10**9).map('{:.1f}G'.format)
    table['nparams'] = (table.nparams / 10**6).map('{:.2f}M'.format)
    print(table)
Ejemplo n.º 2
0
def metrics(args):
    exps = expman.gather(args.run).filter(args.filter)
    mask_metrics = exps.collect('test_pred/mask_metrics.csv')
    sns.lineplot(data=mask_metrics,
                 x='thr',
                 y='dice',
                 hue='conv_type',
                 size='grow_factor',
                 style='num_filters')
    plt.savefig(args.output)
Ejemplo n.º 3
0
def compare_videos(args):
    exps = expman.gather(args.run)
    exps = expman.filter(args.filter, exps)
    exps = list(exps)

    # get params and video paths
    params = expman.collect_all(exps)
    params['video'] = [glob.glob(e.path_to('*.mp4'))[0] for e in exps]
    params = params.sort_values(['alpha', 'd_iter'], ascending=[False, True])

    video_paths = params.video.values
    video_labels = params.exp_name.values

    # find best grid aspect ratio
    n = len(video_paths)
    square_side = np.ceil(np.sqrt(n)).astype(int)
    nrows = np.arange(1, square_side + 1)
    ncols = np.ceil(n / nrows)
    aspect_ratios_per_nrows = (6 / 7) * (ncols / nrows)
    best = np.argmin(np.abs(aspect_ratios_per_nrows - (16 / 9)))
    w = ncols[best].astype(int)
    h = nrows[best].astype(int)

    # build ffmpeg command
    input_args = [f'-i {path}' for path in video_paths]
    input_args = ' '.join(input_args)

    pad_w, pad_h = 10, 30

    filter_complex = [
        f'[{i}:v] '
        f'setpts=PTS-STARTPTS, '
        f'pad=width=iw+{pad_w}: height=ih+{pad_h}: x={pad_w // 2}: y={pad_h}, '
        f'drawtext=text=\'{label}\': fontcolor=white: fontsize=24: x=(w-tw)/2: y=({pad_h}-th)/2 '
        f'[a{i}]' for i, label in enumerate(video_labels)
    ]

    xstack_inputs = ''.join(f'[a{i}]' for i in range(n))

    widths = ['0'] + [f'w{i}' for i in range(w - 1)]
    heights = ['0'] + [f'h{i}' for i in range(h - 1)]

    xstack_layout = [
        '+'.join(widths[:i + 1]) + '_' + '+'.join(heights[:j + 1])
        for j in range(h) for i in range(w)
    ]
    xstack_layout = '|'.join(xstack_layout)

    xstack_filter = f'{xstack_inputs}xstack=inputs={n}: layout={xstack_layout}[out]'

    filter_complex += [xstack_filter]
    filter_complex = ';'.join(filter_complex)

    cmd = f'ffmpeg {input_args} -filter_complex "{filter_complex}" -map "[out]" -c:v hevc -crf 23 -preset fast {args.output}'
    print(cmd)
Ejemplo n.º 4
0
def compare(args):

    exps1 = expman.gather(args.run1).filter(args.filter)
    exps2 = expman.gather(args.run2).filter(args.filter)

    fixed_params1, results1, table1 = _get_scores(exps1)
    fixed_params2, results2, table2 = _get_scores(exps2)

    with pd.option_context('display.max_rows', None, 'display.max_columns',
                           None, 'display.width', 1000):
        with pd.option_context('display.float_format', '{:.2f}'.format):
            print('1]', args.run2)
            print(table2)
            print()
            print('2]', args.run1)
            print(table1)
            print()
        with pd.option_context('display.float_format', '{:.1%}'.format):
            print('D] {} - {}'.format(args.run2, args.run1))
            print(table2 - table1)
Ejemplo n.º 5
0
def log(args):
    exps = expman.gather(args.run).filter(args.filter)
    with PdfPages(args.output) as pdf:
        for exp_name, exp in sorted(exps.items()):
            print(exp_name)
            log = pd.read_csv(exp.path_to('log.csv'), index_col='epoch')
            train_cols = [c for c in log.columns if 'val' not in c]
            val_cols = [c for c in log.columns if 'val' in c]

            test_images = glob(
                os.path.join(exp.path_to('test_pred'), '*_samples.png'))

            fig = plt.figure(figsize=(14, 10))
            fig_shape = (2, 2) if test_images else (2, 1)
            ax1 = plt.subplot2grid(fig_shape, (0, 0))
            ax2 = plt.subplot2grid(fig_shape, (1, 0))

            log[train_cols].plot(ax=ax1)
            log[val_cols].plot(ax=ax2)
            ax1.legend(loc='center right', bbox_to_anchor=(-0.05, 0.5))
            ax2.legend(loc='center right', bbox_to_anchor=(-0.05, 0.5))
            ax2.set_ylim((0, 1))

            if test_images:
                test_images = sorted(test_images)
                test_images = list(map(imread, test_images))
                max_w = max(i.shape[1] for i in test_images)
                pads = [((0, 0), (0, max_w - i.shape[1]), (0, 0))
                        for i in test_images]
                test_images = np.concatenate(
                    [np.pad(i, pad) for i, pad in zip(test_images, pads)],
                    axis=0)

                ax3 = plt.subplot2grid(fig_shape, (0, 1), rowspan=2)
                ax3.imshow(test_images)
                ax3.set_axis_off()

            log_plot_file = exp.path_to('log_plot.pdf')
            plt.suptitle(exp_name)
            plt.savefig(log_plot_file, bbox_inches='tight')
            pdf.savefig(fig, bbox_inches='tight')
            plt.close()
Ejemplo n.º 6
0
def main(args):

    variants = (
        ('', []),
        # ('_qf16', ['--quantize_float16', '*']),
        # ('_qu16', ['--quantize_uint16' , '*']),
        # ('_qu8' , ['--quantize_uint8'  , '*']),
    )

    converted_models = []

    exps = expman.gather(args.run).filter(args.filter)
    for exp_name, exp in tqdm(exps.items()):
        # ckpt = exp.path_to('best_model.h5')
        # ckpt = ckpt if os.path.exists(ckpt) else exp.path_to('last_model.h5')
        ckpt = exp.path_to('best_savedmodel/')

        for suffix, extra_args in variants:
            name = exp_name + suffix
            out = os.path.join(
                args.output,
                name) if args.output else exp.path_to(f'tfjs_graph{suffix}')

            if args.force or not os.path.exists(out):
                os.makedirs(out, exist_ok=True)
                cmd = [
                    'tensorflowjs_converter', '--input_format',
                    'tf_saved_model', '--output_format', 'tfjs_graph_model'
                ] + extra_args + [ckpt, out]
                subprocess.call(cmd)

            converted_models.append(name)

    js_output = 'models = ' + json.dumps(converted_models)
    if args.output:
        js_filename = os.path.join(args.output, 'models.js')
        with open(js_filename, 'w') as f:
            f.write(js_output)
    else:
        print(js_output)
Ejemplo n.º 7
0
def print_scores(args):
    exps = expman.gather(args.run).filter(args.filter)

    fixed_params, results, table = _get_scores(exps, args.best)

    with pd.option_context('display.max_rows', None, 'display.max_columns',
                           None, 'display.width', 500):
        print('Common Parameters')
        print('=================')
        print(fixed_params)
        print('=================')
        print()
        print('Run Metrics')
        print('=================')
        print(results)
        print('=================')
        print()
        print('Best Metrics')
        print('=================')
        with pd.option_context('display.float_format', '{:.2f}'.format):
            print(table)
        print('=================')
        print()
Ejemplo n.º 8
0
def main(args):
    for exp in expman.gather(args.run).filter(args.filter):
        print(exp)
        evaluate(exp, force=args.force)
Ejemplo n.º 9
0
def plot_log(args):

    formatter = lambda x, pos: f'{(x // 1000):g}k' if x >= 1000 else f'{x:g}'
    formatter = FuncFormatter(formatter)

    exps = expman.gather(args.run)
    exps = expman.filter(args.filter, exps)
    exps = sorted(exps, key=lambda exp: exp.params.category)

    with PdfPages(args.output) as pdf:
        for exp in tqdm(exps):
            category = exp.params.category
            train_log = exp.path_to(f'log_{category}.csv.gz')
            train_log = pd.read_csv(train_log)

            metric_log = exp.path_to(f'metrics_{category}.csv')
            metric_log = pd.read_csv(metric_log)

            best_recon_file = exp.path_to(f'best_recon_{category}.png')
            best_recon = plt.imread(best_recon_file)

            last_recon_file = exp.path_to(f'last_recon_{category}.png')
            last_recon = plt.imread(last_recon_file)

            # prepare figure
            zoom = 0.7
            fig = plt.figure(figsize=(20 * zoom, 8 * zoom))
            # gridspec and axes for plots
            gs = fig.add_gridspec(ncols=2,
                                  nrows=2,
                                  hspace=0.05,
                                  wspace=0.05,
                                  right=0.5)
            ax1 = fig.add_subplot(gs[0, 0])
            ax2 = fig.add_subplot(gs[0, 1])
            ax3 = fig.add_subplot(gs[1, 0], sharex=ax1)
            ax4 = fig.add_subplot(gs[1, 1], sharex=ax2)
            # gridspec and axes for preview images
            gs2 = fig.add_gridspec(ncols=1,
                                   nrows=2,
                                   hspace=0,
                                   wspace=0,
                                   left=0.55)
            ax5 = fig.add_subplot(gs2[:, 0])
            # ticklabels format
            ax1.xaxis.set_major_formatter(formatter)
            ax2.xaxis.set_major_formatter(formatter)
            ax3.xaxis.set_major_formatter(formatter)
            ax4.xaxis.set_major_formatter(formatter)
            ax5.axis('off')
            # minor ticks position
            ax3.xaxis.set_minor_locator(AutoMinorLocator())
            ax4.xaxis.set_minor_locator(AutoMinorLocator())
            # minor grid style
            ax1.grid(b=True, which='minor', linewidth=0.5)
            ax2.grid(b=True, which='minor', linewidth=0.5)
            ax3.grid(b=True, which='minor', linewidth=0.5)
            ax4.grid(b=True, which='minor', linewidth=0.5)
            # right y-axes
            ax2.yaxis.set_label_position("right")
            ax2.yaxis.tick_right()
            ax4.yaxis.set_label_position("right")
            ax4.yaxis.tick_right()

            # generator losses
            gen = [
                'generator_encoder_loss', 'images_reconstruction_loss',
                'latent_reconstruction_loss', 'generator_encoder_total_loss'
            ]
            train_log.plot(x='step', y=gen, logy='sym', ax=ax1)
            ax1.legend(loc='lower left', bbox_to_anchor=(0.0, 1.0))

            # discriminator losses
            dis = [
                'discriminator_loss', 'gradient_penalty_loss',
                'discriminator_total_loss'
            ]
            train_log.plot(x='step', y=dis, logy='sym', ax=ax3)
            ax3.legend(loc='upper left', bbox_to_anchor=(0.0, -0.2))

            # scores
            scores = ['real_score', 'fake_score']
            train_log.plot(x='step', y=scores, logy='sym', ax=ax2)
            ax2.legend(loc='lower right', bbox_to_anchor=(1.0, 1.0))

            # metrics
            metric_log.plot(x='step', y=['auc', 'balanced_accuracy'], ax=ax4)
            best_recon_step = train_log[(
                train_log.step %
                1000) == 0].images_reconstruction_loss.idxmin()
            best_recon_step = train_log.loc[best_recon_step, 'step']
            ax4.axvline(best_recon_step, color='black', lw=1)
            ax4.legend(loc='upper right', bbox_to_anchor=(1.0, -0.2))

            # best/last reconstruction
            hw = best_recon.shape[1] // 2
            recon = np.hstack((best_recon[:, :hw, :], last_recon[:, :hw, :]))
            ax5.imshow(recon)
            ax5.margins(0)

            # params
            params_str = exp.params.to_string()
            plt.figtext(0.08,
                        0.5,
                        params_str,
                        ha='right',
                        va='center',
                        family='monospace')

            # save sigle figure in exp folder
            log_pdf = exp.path_to(f'log_{category}.pdf')
            fig.savefig(log_pdf, bbox_inches='tight')

            # add as page in PDF
            pdf.savefig(fig, bbox_inches='tight')
            plt.close(fig)
Ejemplo n.º 10
0
def bd(args):
    exps = expman.gather(args.run).filter(args.filter)
    blink_metrics = exps.collect('test_pred/all_blink_roc_metrics.csv')
    blink_metrics = blink_metrics.iloc[3::4].rename({'0': 'auc'}, axis=1)
    aucs = blink_metrics.auc.values
    print(f'{aucs.mean()} +- {aucs.std()}')
Ejemplo n.º 11
0
def ee(args):
    sns.set_theme(context='notebook', style='whitegrid')

    exps = expman.gather(args.run).filter(args.filter)
    mask_metrics = exps.collect('test_pred/mask_metrics.csv').groupby(
        'exp_id')[['dice', 'iou']].max()
    flops_nparams = exps.collect('flops_nparams.csv')
    data = pd.merge(mask_metrics, flops_nparams, on='exp_id')
    data['dice'] *= 100

    named_data = data.rename(
        {
            'nparams': '# Params',
            'dice': 'mean Dice Coeff. (%)',
            'conv_type': '$t$ (Conv. Type)',
            'grow_factor': r'$\gamma$',
            'num_filters': '$k$ (# Filters)',
            'flops': 'FLOPs',
            'num_stages': '$s$ (# Stages)',
        },
        axis=1).replace({
            'bn-conv': 'conv-bn',
            'sep-bn-conv': 'sep-conv-bn'
        })

    g = sns.relplot(data=named_data,
                    x='FLOPs',
                    y='mean Dice Coeff. (%)',
                    hue='$t$ (Conv. Type)',
                    hue_order=['conv', 'conv-bn', 'sep-conv', 'sep-conv-bn'],
                    col='$s$ (# Stages)',
                    style='$k$ (# Filters)',
                    markers=True,
                    markersize=9,
                    kind='line',
                    dashes=True,
                    facet_kws=dict(despine=False, legend_out=False),
                    legend=True,
                    height=3.8,
                    aspect=1.3,
                    markeredgecolor='white')

    b_formatter = ticker.FuncFormatter(
        lambda x, pos: '{:.2f}'.format(x / 10**9) + 'B')

    h, l = g.axes.flatten()[0].get_legend_handles_labels()
    for hi in h:
        hi.set_markeredgecolor('white')
    g.axes.flatten()[0].legend_.remove()
    g.fig.legend(h,
                 l,
                 ncol=2,
                 bbox_to_anchor=(0.53, 0.53),
                 fancybox=False,
                 columnspacing=0,
                 framealpha=1,
                 handlelength=1.2)

    for ax in g.axes.flatten():
        ax.yaxis.set_minor_locator(ticker.AutoMinorLocator())
        ax.set_ylim(bottom=40, top=90)
        ax.set_xscale('symlog')
        ax.set_xlim(left=0.04 * 10**9, right=2 * 10**9)

        ax.xaxis.set_minor_locator(
            ticker.SymmetricalLogLocator(base=10,
                                         linthresh=2,
                                         subs=[1.5, 2, 3, 4, 5, 6, 8]))
        ax.xaxis.set_minor_formatter(b_formatter)
        ax.grid(which='minor', linestyle='--', color='#eeeeee')

        ax.xaxis.set_major_formatter(b_formatter)
        ax.tick_params(axis="x", which="both", rotation=90)

    plt.savefig(args.output, bbox_inches='tight')