Ejemplo n.º 1
0
def first_order_excitation(k, draft, radius, water_depth):
    """Returns F/(rho g a^2 A) -- from Drake, but adapted by me to
    integrate down to the draft depth only (not to the seabed)"""
    ka = k * radius
    kd = k * draft
    kh = k * water_depth

    # XXX check this!
    f1 = -1j * (jn(1, ka) - jnd(1, ka) * hankel2(1, ka) / hankel2d(1, ka))
    #f1 = -1j * (jn(1, ka) - jnd(1, ka) * hankel1(1, ka) / hankel1d(1, ka))
    M = (kd * sinh(kh - kd) + cosh(kh - kd) - cosh(kh)) / (k * cosh(kh))
    F = (-sinh(kh - kd) + sinh(kh)) / cosh(kh)
    X = np.zeros(M.shape + (6, ), dtype=np.complex)
    X[..., 0] = (-2 * pi / ka) * f1 * F
    X[..., 4] = (-2 * pi / ka) * f1 * M
    return X
Ejemplo n.º 2
0
def excitation_force(w, draft, radius, water_depth):
    """Excitation force on cylinder using Drake's first_order_excitation"""
    k = w**2 / 9.81
    ka = k * radius
    kd = k * draft
    kh = k * water_depth

    rho = 1025
    g = 9.81

    # XXX check this!
    f1 = -1j * (jn(1, ka) - jnd(1, ka) * hankel2(1, ka) / hankel2d(1, ka))
    #f1 = -1j * (jn(1, ka) - jnd(1, ka) * hankel1(1, ka) / hankel1d(1, ka))
    M = (kd * sinh(kh - kd) + cosh(kh - kd) - cosh(kh)) / (k**2 * cosh(kh))
    F = (-sinh(kh - kd) + sinh(kh)) / (k * cosh(kh))

    zs = zeros_like(F, dtype=np.complex)
    X = np.c_[F, zs, zs, zs, M, zs]
    X *= (-rho * g * pi * radius) * 2 * f1[:, newaxis]

    return X