def activation_functions_vs_errors():
    # load dataset
    train_x, train_t, val_x, val_t, test_x, test_t = load_dataset()
    
    # create l-dim network by just adding num of neurons in layer_dim
    # first and last elements represent input and output layers dim
    layer_dim = [1,50,50,50,50,50,1]
    
    # add activation functions name here. 
    # input layer activation function is None
    activations = [[None, 'sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','identity'],
                   [None, 'tanh','tanh','tanh','tanh','tanh','identity'],
                   [None, 'relu','relu','relu','relu','relu','identity'],
                   [None, 'lrelu','lrelu','lrelu','lrelu','lrelu','identity']]
    assert len(layer_dim) ==  len(activations[0]), "layer dim or activation is missing.."
    
    # hyper parameters of neural network
    learning_rate = 1e-3
    num_epochs = 100
    mini_batch_size = 25
    train_loss = []
    test_loss = []
    for l in range(4):
        nn = NeuralNetwork(layer_dim, activations[l], learning_rate, num_epochs, mini_batch_size)
    
    # train neural network 
        nn.train(train_x, train_t, val_x, val_t)
        # test neural network 
        trainloss, _ = nn.test(train_x, train_t)
        train_loss.append(trainloss)
        testloss, test_output = nn.test(test_x, test_t)
        test_loss.append(testloss)
def activation_functions_vs_hidden_layers():
    # load dataset
    train_x, train_t, val_x, val_t, test_x, test_t = load_dataset()
    
    # create l-dim network by just adding num of neurons in layer_dim
    # first and last elements represent input and output layers dim
    layer_dim = [[1,50,1],[1,50,50,1],[1,50,50,50,1],[1,50,50,50,50,50,1],[1,50,50,50,50,50,50,50,50,50,50,1]]
    
    # add activation functions name here. 
    # input layer activation function is None
    activations = [[[None, 'sigmoid','identity'],
                   [None, 'tanh','identity'],
                   [None, 'relu','identity'],
                   [None, 'lrelu','identity']],
                   [[None, 'sigmoid','sigmoid','identity'],
                   [None, 'tanh','tanh','identity'],
                   [None, 'relu','relu','identity'],
                   [None, 'lrelu','lrelu','identity']],
                   [[None, 'sigmoid','sigmoid','sigmoid','identity'],
                   [None, 'tanh','tanh','tanh','identity'],
                   [None, 'relu','relu','relu','identity'],
                   [None, 'lrelu','lrelu','lrelu','identity']],
                   [[None, 'sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','identity'],
                   [None, 'tanh','tanh','tanh','tanh','tanh','identity'],
                   [None, 'relu','relu','relu','relu','relu','identity'],
                   [None, 'lrelu','lrelu','lrelu','lrelu','lrelu','identity']],
                   [[None, 'sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','sigmoid','identity'],
                   [None, 'tanh','tanh','tanh','tanh','tanh','tanh','tanh','tanh','tanh','tanh','identity'],
                   [None, 'relu','relu','relu','relu','relu','relu','relu','relu','relu','relu','identity'],
                   [None, 'lrelu','lrelu','lrelu','lrelu','lrelu','lrelu','lrelu','lrelu','lrelu','lrelu','identity']]]
    
    #hyper parameters of neural network
    learning_rate = 1e-3
    epochs = 100
    mini_batch_size = 10
    for i in range(5):
        for j in range(4):
            nn = NeuralNetwork(layer_dim[i], activations[i][j], learning_rate, num_epochs, mini_batch_size)
            # train neural network 
            nn.train(train_x, train_t, val_x, val_t)
            trainloss, _ = nn.test(train_x, train_t)
            train_loss.append(trainloss)
            testloss, test_output = nn.test(test_x, test_t)
            # test neural network 
            if(j == 0):
                test_error_sigmoid.append(testloss)
            elif(j == 1):
                test_error_tanh.append(testloss)
            elif(j == 2):
                test_error_relu.append(testloss)
            else:
                test_error_lrelu.append(testloss)
Ejemplo n.º 3
0
import numpy as np
import matplotlib.pyplot as plt
from neural_network import *
from f_load_dataset import load_dataset

# load dataset
train_x, train_t, test_x, test_t = load_dataset()
#idx = 0
#minibatch_input =  train_x[idx:idx + 32,:]
#minibatch_target =  train_t[idx:idx + 32,:]

# create l-dim network by just adding num of neurons in layer_dim
# first and last elements represent input and output layers dim
layer_dim = [784, 5, 5, 2]

# add activation functions name here.
# input layer activation function is None
activations = [None, 'sigmoid', 'sigmoid', 'softmax']
assert len(layer_dim) == len(
    activations), "layer dim or activation is missing.."

# hyper parameters of neural network
learning_rate = 1e-3
num_epochs = 100
mini_batch_size = 32

nn = NeuralNetwork(layer_dim, activations, learning_rate, num_epochs,
                   mini_batch_size)

# train neural network
nn.train(train_x, train_t)
Ejemplo n.º 4
0
import numpy as np
import matplotlib.pyplot as plt
from neural_network import *
from f_load_dataset import load_dataset
# load dataset
batch_size = 100
train_loader, test_loader = load_dataset(batch_size)

# create l-dim network by just adding num of neurons in layer_dim
# first and last elements represent input and output layers dim
layer_dim = [784, 50, 50, 10]

# add activation functions name here.
# input layer activation function is None
activations = [None, 'relu', 'relu', 'identity']
assert len(layer_dim) == len(
    activations), "layer dim or activation is missing.."

# hyper parameters of neural network
learning_rate = 1e-1
num_epochs = 15
#mini_batch_size = 10

# train neural network
train(train_loader, learning_rate, num_epochs, layer_dim, activations)

# test neural network
test(test_loader)