Ejemplo n.º 1
0
def createWebfaceRawData(imgSize, saveFilePath):

    start = 0
    peopleNum = 2500
    singleSubNum = 20
    datax = []
    datay = []
    dirlist = sorted(os.listdir(webfaceRoot))[start:start + peopleNum]

    for index, dir in enumerate(dirlist):
        print("%d people running..." % index)
        for root, d, files in os.walk(webfaceRoot + dir):
            print("img num:", len(files))
            for file in files[:singleSubNum]:
                imgPath = webfaceRoot + dir + "/" + file
                img = cv2.imread(imgPath)
                try:
                    faceImg = findAlignFace_dlib(img, imgSize)
                except:
                    continue
                datax.append(faceImg)
                datay.append(index)
    datax = np.array(datax)
    datay = np.array(datay)

    f = h5py.File(saveFilePath, 'w')
    f['data'] = datax
    f['labels'] = datay
    f.close()
def runLFW(model, trainLabel, imgSize):

    acc = 0
    posScore = []
    negScore = []

    count = 0
    posGen = getPosPairsImg()
    for img1, img2 in posGen:
        count += 1
        if count > 10:
            break
        try:
            faceImg1 = findAlignFace_dlib(img1, imgSize)
            faceImg2 = findAlignFace_dlib(img2, imgSize)
        except:
            continue
        faceImg1 = (faceImg1[np.newaxis, :, :, :]-127.5)/128.0
        faceImg2 = (faceImg2[np.newaxis, :, :, :]-127.5)/128.0
        rep1 = model.getRepVec(faceImg1, trainLabel)
        rep2 = model.getRepVec(faceImg2, trainLabel)
        score = calcCosSimilarityPairs(rep1, rep2)
        print(score)
        #posScore.append(score)

    #posCsv = pd.DataFrame(posScore)
    #posCsv.to_csv("./data/pos_score_"+modelName+".csv", index=False)

    count = 0
    negGen = getNegPairsImg()
    for img1, img2 in negGen:
        count += 1
        if count > 10:
            break
        try:
            faceImg1 = findAlignFace_dlib(img1, imgSize)
            faceImg2 = findAlignFace_dlib(img2, imgSize)
        except:
            continue
        faceImg1 = (faceImg1[np.newaxis, :, :, :] - 127.5) / 128.0
        faceImg2 = (faceImg2[np.newaxis, :, :, :] - 127.5) / 128.0
        rep1 = model.getRepVec(faceImg1, trainLabel)
        rep2 = model.getRepVec(faceImg2, trainLabel)
        score = calcCosSimilarityPairs(rep1, rep2)
        print(score)
Ejemplo n.º 3
0
def getRep_VGGface(rgbImg, version=2):

    alignedFace = findAlignFace_dlib(rgbImg, 224)

    alignedFace = alignedFace.astype(np.float64)

    x = np.expand_dims(alignedFace, axis=0)
    x = utils.preprocess_input(x, version=version)  # or version=2
    rep = model.predict(x)
    rep = np.reshape(rep, (2048, ))
    return rep
def gerRep_lightCNN_pytorch(rgbImg):

    faceImg = findAlignFace_dlib(rgbImg, 128)

    inputImg = torch.zeros(1, 1, 128, 128)

    grayImg = cv2.cvtColor(faceImg, cv2.COLOR_RGB2GRAY)
    img = np.reshape(grayImg, (128, 128, 1))
    img = transform(img)
    inputImg[0, :, :, :] = img
    input = inputImg.cuda()
    input_var = torch.autograd.Variable(input, volatile=True)
    _, features = model(input_var)

    rep = features.data.cpu().numpy()
    rep = np.reshape(rep, (256, ))

    return rep
Ejemplo n.º 5
0
def createPairsWebface(saveFileName):

    posNum = 2
    negNum = 2
    imgSize = 128

    trainPair1 = []
    trainPair2 = []
    label = []

    peopleList = sorted(os.listdir(webfaceRoot))  # 获取所有人名列表

    for index, dir in enumerate(peopleList):
        print("%d people running..." % index)

        # 选取anchor样本
        posImgList = os.listdir(webfaceRoot + dir)
        anchorIndex = np.random.randint(0, len(posImgList))
        anchor = posImgList[anchorIndex]

        anchorImgPath = webfaceRoot + dir + "/" + anchor
        print("anchor img path:", anchorImgPath)
        anchorImg = cv2.imread(anchorImgPath)

        try:
            anchorImg = findAlignFace_dlib(anchorImg, imgSize)
        except:
            continue
        anchorImg = cv2.cvtColor(anchorImg, cv2.COLOR_RGB2GRAY)
        anchorImg = anchorImg[:, :, np.newaxis]

        for i in range(negNum):

            # 选取负样本人
            tmpPeopleList = copy.deepcopy(peopleList)
            del tmpPeopleList[index]  # 除去本人的图片集

            # 随机选取一个人作为负样本集
            negPeople = tmpPeopleList[np.random.randint(0, len(tmpPeopleList))]
            negPeopleImgList = os.listdir(webfaceRoot + negPeople)
            # 随机选一张图片作为负样本
            neg = negPeopleImgList[np.random.randint(0, len(negPeopleImgList))]
            negImgPath = webfaceRoot + negPeople + "/" + neg
            print("neg img path:", negImgPath)
            negImg = cv2.imread(negImgPath)

            try:
                negImg = findAlignFace_dlib(negImg, imgSize)
            except:
                continue
            negImg = cv2.cvtColor(negImg, cv2.COLOR_RGB2GRAY)
            negImg = negImg[:, :, np.newaxis]

            trainPair1.append(anchorImg)
            trainPair2.append(negImg)
            label.append(-1)

        for i in range(posNum):

            # 随机选取正样本
            tmpPosImgList = copy.deepcopy(posImgList)
            del tmpPosImgList[anchorIndex]  # 除去anchor图片
            pos = posImgList[np.random.randint(0, len(posImgList))]

            posImgPath = webfaceRoot + dir + "/" + pos
            print("pos img path:", posImgPath)
            posImg = cv2.imread(posImgPath)

            try:
                posImg = findAlignFace_dlib(posImg, imgSize)
            except:
                continue
            posImg = cv2.cvtColor(posImg, cv2.COLOR_RGB2GRAY)
            posImg = posImg[:, :, np.newaxis]

            trainPair1.append(anchorImg)
            trainPair2.append(posImg)
            label.append(1)

    f = h5py.File(saveFileName, 'w')
    f['train_pair1'] = np.array(trainPair1)
    f['train_pair2'] = np.array(trainPair2)
    f['label'] = np.array(label)
    f.close()
Ejemplo n.º 6
0
def getRep_openface(rgbImg):

    alignedFace = findAlignFace_dlib(rgbImg, 96)
    rep = net.forward(alignedFace)

    return rep