def apply_xseg(input_path, model_path): if not input_path.exists(): raise ValueError(f'{input_path} not found. Please ensure it exists.') if not model_path.exists(): raise ValueError(f'{model_path} not found. Please ensure it exists.') io.log_info(f'Applying trained XSeg model to {input_path.name}/ folder.') device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True) nn.initialize(device_config) xseg = XSegNet(name='XSeg', load_weights=True, weights_file_root=model_path, data_format=nn.data_format, raise_on_no_model_files=True) res = xseg.get_resolution() images_paths = pathex.get_image_paths(input_path, return_Path_class=True) for filepath in io.progress_bar_generator(images_paths, "Processing"): dflimg = DFLIMG.load(filepath) if dflimg is None or not dflimg.has_data(): io.log_info(f'{filepath} is not a DFLIMG') continue img = cv2_imread(filepath).astype(np.float32) / 255.0 h, w, c = img.shape if w != res: img = cv2.resize(img, (res, res), interpolation=cv2.INTER_CUBIC) if len(img.shape) == 2: img = img[..., None] mask = xseg.extract(img) mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 dflimg.set_xseg_mask(mask) dflimg.save()
def apply_xseg(input_path, model_path): if not input_path.exists(): raise ValueError(f'{input_path} not found. Please ensure it exists.') if not model_path.exists(): raise ValueError(f'{model_path} not found. Please ensure it exists.') face_type = None model_dat = model_path / 'XSeg_data.dat' if model_dat.exists(): dat = pickle.loads( model_dat.read_bytes() ) dat_options = dat.get('options', None) if dat_options is not None: face_type = dat_options.get('face_type', None) if face_type is None: face_type = io.input_str ("XSeg model face type", 'same', ['h','mf','f','wf','head','same'], help_message="Specify face type of trained XSeg model. For example if XSeg model trained as WF, but faceset is HEAD, specify WF to apply xseg only on WF part of HEAD. Default is 'same'").lower() if face_type == 'same': face_type = None if face_type is not None: face_type = {'h' : FaceType.HALF, 'mf' : FaceType.MID_FULL, 'f' : FaceType.FULL, 'wf' : FaceType.WHOLE_FACE, 'head' : FaceType.HEAD}[face_type] io.log_info(f'Applying trained XSeg model to {input_path.name}/ folder.') device_config = nn.DeviceConfig.ask_choose_device(choose_only_one=True) nn.initialize(device_config) xseg = XSegNet(name='XSeg', load_weights=True, weights_file_root=model_path, data_format=nn.data_format, raise_on_no_model_files=True) xseg_res = xseg.get_resolution() images_paths = pathex.get_image_paths(input_path, return_Path_class=True) for filepath in io.progress_bar_generator(images_paths, "Processing"): dflimg = DFLIMG.load(filepath) if dflimg is None or not dflimg.has_data(): io.log_info(f'{filepath} is not a DFLIMG') continue img = cv2_imread(filepath).astype(np.float32) / 255.0 h,w,c = img.shape img_face_type = FaceType.fromString( dflimg.get_face_type() ) if face_type is not None and img_face_type != face_type: lmrks = dflimg.get_source_landmarks() fmat = LandmarksProcessor.get_transform_mat(lmrks, w, face_type) imat = LandmarksProcessor.get_transform_mat(lmrks, w, img_face_type) g_p = LandmarksProcessor.transform_points (np.float32([(0,0),(w,0),(0,w) ]), fmat, True) g_p2 = LandmarksProcessor.transform_points (g_p, imat) mat = cv2.getAffineTransform( g_p2, np.float32([(0,0),(w,0),(0,w) ]) ) img = cv2.warpAffine(img, mat, (w, w), cv2.INTER_LANCZOS4) img = cv2.resize(img, (xseg_res, xseg_res), interpolation=cv2.INTER_LANCZOS4) else: if w != xseg_res: img = cv2.resize( img, (xseg_res,xseg_res), interpolation=cv2.INTER_LANCZOS4 ) if len(img.shape) == 2: img = img[...,None] mask = xseg.extract(img) if face_type is not None and img_face_type != face_type: mask = cv2.resize(mask, (w, w), interpolation=cv2.INTER_LANCZOS4) mask = cv2.warpAffine( mask, mat, (w,w), np.zeros( (h,w,c), dtype=np.float), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4) mask = cv2.resize(mask, (xseg_res, xseg_res), interpolation=cv2.INTER_LANCZOS4) mask[mask < 0.5]=0 mask[mask >= 0.5]=1 dflimg.set_xseg_mask(mask) dflimg.save()
def on_initialize(self): device_config = nn.getCurrentDeviceConfig() self.model_data_format = "NCHW" if self.is_exporting or (len( device_config.devices) != 0 and not self.is_debug()) else "NHWC" nn.initialize(data_format=self.model_data_format) tf = nn.tf device_config = nn.getCurrentDeviceConfig() devices = device_config.devices self.resolution = resolution = 256 self.face_type = { 'h': FaceType.HALF, 'mf': FaceType.MID_FULL, 'f': FaceType.FULL, 'wf': FaceType.WHOLE_FACE, 'head': FaceType.HEAD }[self.options['face_type']] place_model_on_cpu = len(devices) == 0 models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name bgr_shape = nn.get4Dshape(resolution, resolution, 3) mask_shape = nn.get4Dshape(resolution, resolution, 1) # Initializing model classes self.model = XSegNet(name='XSeg', resolution=resolution, load_weights=not self.is_first_run(), weights_file_root=self.get_model_root_path(), training=True, place_model_on_cpu=place_model_on_cpu, optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), data_format=nn.data_format) self.pretrain = self.options['pretrain'] if self.pretrain_just_disabled: self.set_iter(0) if self.is_training: # Adjust batch size for multiple GPU gpu_count = max(1, len(devices)) bs_per_gpu = max(1, self.get_batch_size() // gpu_count) self.set_batch_size(gpu_count * bs_per_gpu) # Compute losses per GPU gpu_pred_list = [] gpu_losses = [] gpu_loss_gvs = [] for gpu_id in range(gpu_count): with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0'): with tf.device(f'/CPU:0'): # slice on CPU, otherwise all batch data will be transfered to GPU first batch_slice = slice(gpu_id * bs_per_gpu, (gpu_id + 1) * bs_per_gpu) gpu_input_t = self.model.input_t[batch_slice, :, :, :] gpu_target_t = self.model.target_t[ batch_slice, :, :, :] # process model tensors gpu_pred_logits_t, gpu_pred_t = self.model.flow( gpu_input_t, pretrain=self.pretrain) gpu_pred_list.append(gpu_pred_t) if self.pretrain: # Structural loss gpu_loss = tf.reduce_mean( 5 * nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution / 11.6)), axis=[1]) gpu_loss += tf.reduce_mean( 5 * nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution / 23.2)), axis=[1]) # Pixel loss gpu_loss += tf.reduce_mean( 10 * tf.square(gpu_target_t - gpu_pred_t), axis=[1, 2, 3]) else: gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1, 2, 3]) gpu_losses += [gpu_loss] gpu_loss_gvs += [ nn.gradients(gpu_loss, self.model.get_weights()) ] # Average losses and gradients, and create optimizer update ops #with tf.device(f'/CPU:0'): # Temporary fix. Unknown bug with training freeze starts from 2.4.0, but 2.3.1 was ok with tf.device(models_opt_device): pred = tf.concat(gpu_pred_list, 0) loss = tf.concat(gpu_losses, 0) loss_gv_op = self.model.opt.get_update_op( nn.average_gv_list(gpu_loss_gvs)) # Initializing training and view functions if self.pretrain: def train(input_np, target_np): l, _ = nn.tf_sess.run( [loss, loss_gv_op], feed_dict={ self.model.input_t: input_np, self.model.target_t: target_np }) return l else: def train(input_np, target_np): l, _ = nn.tf_sess.run( [loss, loss_gv_op], feed_dict={ self.model.input_t: input_np, self.model.target_t: target_np }) return l self.train = train def view(input_np): return nn.tf_sess.run([pred], feed_dict={self.model.input_t: input_np}) self.view = view # initializing sample generators cpu_count = min(multiprocessing.cpu_count(), 8) src_dst_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2 if self.pretrain: pretrain_gen = SampleGeneratorFace( self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=True), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': True, 'transform': True, 'channel_type': SampleProcessor.ChannelType.BGR, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': True, 'transform': True, 'channel_type': SampleProcessor.ChannelType.G, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], uniform_yaw_distribution=False, generators_count=cpu_count) self.set_training_data_generators([pretrain_gen]) else: srcdst_generator = SampleGeneratorFaceXSeg( [self.training_data_src_path, self.training_data_dst_path], debug=self.is_debug(), batch_size=self.get_batch_size(), resolution=resolution, face_type=self.face_type, generators_count=src_dst_generators_count, data_format=nn.data_format) src_generator = SampleGeneratorFace( self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=src_generators_count, raise_on_no_data=False) dst_generator = SampleGeneratorFace( self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=dst_generators_count, raise_on_no_data=False) self.set_training_data_generators( [srcdst_generator, src_generator, dst_generator])
class XSegModel(ModelBase): def __init__(self, *args, **kwargs): super().__init__(*args, force_model_class_name='XSeg', **kwargs) #override def on_initialize_options(self): ask_override = self.ask_override() if not self.is_first_run() and ask_override: if io.input_bool( f"Restart training?", False, help_message= "Reset model weights and start training from scratch."): self.set_iter(0) default_face_type = self.options[ 'face_type'] = self.load_or_def_option('face_type', 'wf') default_pretrain = self.options['pretrain'] = self.load_or_def_option( 'pretrain', False) if self.is_first_run(): self.options['face_type'] = io.input_str( "Face type", default_face_type, ['h', 'mf', 'f', 'wf', 'head'], help_message= "Half / mid face / full face / whole face / head. Choose the same as your deepfake model." ).lower() if self.is_first_run() or ask_override: self.ask_batch_size(4, range=[2, 16]) self.options['pretrain'] = io.input_bool("Enable pretraining mode", default_pretrain) if not self.is_exporting and ( self.options['pretrain'] and self.get_pretraining_data_path() is None): raise Exception("pretraining_data_path is not defined") self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False) #override def on_initialize(self): device_config = nn.getCurrentDeviceConfig() self.model_data_format = "NCHW" if self.is_exporting or (len( device_config.devices) != 0 and not self.is_debug()) else "NHWC" nn.initialize(data_format=self.model_data_format) tf = nn.tf device_config = nn.getCurrentDeviceConfig() devices = device_config.devices self.resolution = resolution = 256 self.face_type = { 'h': FaceType.HALF, 'mf': FaceType.MID_FULL, 'f': FaceType.FULL, 'wf': FaceType.WHOLE_FACE, 'head': FaceType.HEAD }[self.options['face_type']] place_model_on_cpu = len(devices) == 0 models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name bgr_shape = nn.get4Dshape(resolution, resolution, 3) mask_shape = nn.get4Dshape(resolution, resolution, 1) # Initializing model classes self.model = XSegNet(name='XSeg', resolution=resolution, load_weights=not self.is_first_run(), weights_file_root=self.get_model_root_path(), training=True, place_model_on_cpu=place_model_on_cpu, optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), data_format=nn.data_format) self.pretrain = self.options['pretrain'] if self.pretrain_just_disabled: self.set_iter(0) if self.is_training: # Adjust batch size for multiple GPU gpu_count = max(1, len(devices)) bs_per_gpu = max(1, self.get_batch_size() // gpu_count) self.set_batch_size(gpu_count * bs_per_gpu) # Compute losses per GPU gpu_pred_list = [] gpu_losses = [] gpu_loss_gvs = [] for gpu_id in range(gpu_count): with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0'): with tf.device(f'/CPU:0'): # slice on CPU, otherwise all batch data will be transfered to GPU first batch_slice = slice(gpu_id * bs_per_gpu, (gpu_id + 1) * bs_per_gpu) gpu_input_t = self.model.input_t[batch_slice, :, :, :] gpu_target_t = self.model.target_t[ batch_slice, :, :, :] # process model tensors gpu_pred_logits_t, gpu_pred_t = self.model.flow( gpu_input_t, pretrain=self.pretrain) gpu_pred_list.append(gpu_pred_t) if self.pretrain: # Structural loss gpu_loss = tf.reduce_mean( 5 * nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution / 11.6)), axis=[1]) gpu_loss += tf.reduce_mean( 5 * nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution / 23.2)), axis=[1]) # Pixel loss gpu_loss += tf.reduce_mean( 10 * tf.square(gpu_target_t - gpu_pred_t), axis=[1, 2, 3]) else: gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1, 2, 3]) gpu_losses += [gpu_loss] gpu_loss_gvs += [ nn.gradients(gpu_loss, self.model.get_weights()) ] # Average losses and gradients, and create optimizer update ops #with tf.device(f'/CPU:0'): # Temporary fix. Unknown bug with training freeze starts from 2.4.0, but 2.3.1 was ok with tf.device(models_opt_device): pred = tf.concat(gpu_pred_list, 0) loss = tf.concat(gpu_losses, 0) loss_gv_op = self.model.opt.get_update_op( nn.average_gv_list(gpu_loss_gvs)) # Initializing training and view functions if self.pretrain: def train(input_np, target_np): l, _ = nn.tf_sess.run( [loss, loss_gv_op], feed_dict={ self.model.input_t: input_np, self.model.target_t: target_np }) return l else: def train(input_np, target_np): l, _ = nn.tf_sess.run( [loss, loss_gv_op], feed_dict={ self.model.input_t: input_np, self.model.target_t: target_np }) return l self.train = train def view(input_np): return nn.tf_sess.run([pred], feed_dict={self.model.input_t: input_np}) self.view = view # initializing sample generators cpu_count = min(multiprocessing.cpu_count(), 8) src_dst_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2 if self.pretrain: pretrain_gen = SampleGeneratorFace( self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=True), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': True, 'transform': True, 'channel_type': SampleProcessor.ChannelType.BGR, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': True, 'transform': True, 'channel_type': SampleProcessor.ChannelType.G, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], uniform_yaw_distribution=False, generators_count=cpu_count) self.set_training_data_generators([pretrain_gen]) else: srcdst_generator = SampleGeneratorFaceXSeg( [self.training_data_src_path, self.training_data_dst_path], debug=self.is_debug(), batch_size=self.get_batch_size(), resolution=resolution, face_type=self.face_type, generators_count=src_dst_generators_count, data_format=nn.data_format) src_generator = SampleGeneratorFace( self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=src_generators_count, raise_on_no_data=False) dst_generator = SampleGeneratorFace( self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=dst_generators_count, raise_on_no_data=False) self.set_training_data_generators( [srcdst_generator, src_generator, dst_generator]) #override def get_model_filename_list(self): return self.model.model_filename_list #override def onSave(self): self.model.save_weights() #override def onTrainOneIter(self): image_np, target_np = self.generate_next_samples()[0] loss = self.train(image_np, target_np) return (('loss', np.mean(loss)), ) #override def onGetPreview(self, samples, for_history=False): n_samples = min(4, self.get_batch_size(), 800 // self.resolution) if self.pretrain: srcdst_samples, = samples image_np, mask_np = srcdst_samples else: srcdst_samples, src_samples, dst_samples = samples image_np, mask_np = srcdst_samples I, M, IM, = [ np.clip(nn.to_data_format(x, "NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np, mask_np] + self.view(image_np)) ] M, IM, = [np.repeat(x, (3, ), -1) for x in [M, IM]] green_bg = np.tile( np.array([0, 1, 0], dtype=np.float32)[None, None, ...], (self.resolution, self.resolution, 1)) result = [] st = [] for i in range(n_samples): if self.pretrain: ar = I[i], IM[i] else: ar = I[i] * M[i] + 0.5 * I[i] * (1 - M[i]) + 0.5 * green_bg * ( 1 - M[i]), IM[i], I[i] * IM[i] + 0.5 * I[i] * ( 1 - IM[i]) + 0.5 * green_bg * (1 - IM[i]) st.append(np.concatenate(ar, axis=1)) result += [ ('XSeg training faces', np.concatenate(st, axis=0)), ] if not self.pretrain and len(src_samples) != 0: src_np, = src_samples D, DM, = [ np.clip(nn.to_data_format(x, "NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view(src_np)) ] DM, = [np.repeat(x, (3, ), -1) for x in [DM]] st = [] for i in range(n_samples): ar = D[i], DM[i], D[i] * DM[i] + 0.5 * D[i] * ( 1 - DM[i]) + 0.5 * green_bg * (1 - DM[i]) st.append(np.concatenate(ar, axis=1)) result += [ ('XSeg src faces', np.concatenate(st, axis=0)), ] if not self.pretrain and len(dst_samples) != 0: dst_np, = dst_samples D, DM, = [ np.clip(nn.to_data_format(x, "NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view(dst_np)) ] DM, = [np.repeat(x, (3, ), -1) for x in [DM]] st = [] for i in range(n_samples): ar = D[i], DM[i], D[i] * DM[i] + 0.5 * D[i] * ( 1 - DM[i]) + 0.5 * green_bg * (1 - DM[i]) st.append(np.concatenate(ar, axis=1)) result += [ ('XSeg dst faces', np.concatenate(st, axis=0)), ] return result def export_dfm(self): output_path = self.get_strpath_storage_for_file(f'model.onnx') io.log_info(f'Dumping .onnx to {output_path}') tf = nn.tf with tf.device(nn.tf_default_device_name): input_t = tf.placeholder( nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') input_t = tf.transpose(input_t, (0, 3, 1, 2)) _, pred_t = self.model.flow(input_t) pred_t = tf.transpose(pred_t, (0, 2, 3, 1)) tf.identity(pred_t, name='out_mask') output_graph_def = tf.graph_util.convert_variables_to_constants( nn.tf_sess, tf.get_default_graph().as_graph_def(), ['out_mask']) import tf2onnx with tf.device("/CPU:0"): model_proto, _ = tf2onnx.convert._convert_common( output_graph_def, name='XSeg', input_names=['in_face:0'], output_names=['out_mask:0'], opset=13, output_path=output_path)
class XSegModel(ModelBase): def __init__(self, *args, **kwargs): super().__init__(*args, force_model_class_name='XSeg', **kwargs) #override def on_initialize_options(self): self.set_batch_size(4) ask_override = self.ask_override() if not self.is_first_run() and ask_override: if io.input_bool( f"Restart training?", False, help_message= "Reset model weights and start training from scratch."): self.set_iter(0) default_face_type = self.options[ 'face_type'] = self.load_or_def_option('face_type', 'wf') if self.is_first_run(): self.options['face_type'] = io.input_str( "Face type", default_face_type, ['h', 'mf', 'f', 'wf', 'head'], help_message= "Half / mid face / full face / whole face / head. Choose the same as your deepfake model." ).lower() #override def on_initialize(self): device_config = nn.getCurrentDeviceConfig() self.model_data_format = "NCHW" if len( device_config.devices) != 0 and not self.is_debug() else "NHWC" nn.initialize(data_format=self.model_data_format) tf = nn.tf device_config = nn.getCurrentDeviceConfig() devices = device_config.devices self.resolution = resolution = 256 self.face_type = { 'h': FaceType.HALF, 'mf': FaceType.MID_FULL, 'f': FaceType.FULL, 'wf': FaceType.WHOLE_FACE, 'head': FaceType.HEAD }[self.options['face_type']] place_model_on_cpu = len(devices) == 0 models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0' bgr_shape = nn.get4Dshape(resolution, resolution, 3) mask_shape = nn.get4Dshape(resolution, resolution, 1) # Initializing model classes self.model = XSegNet(name='XSeg', resolution=resolution, load_weights=not self.is_first_run(), weights_file_root=self.get_model_root_path(), training=True, place_model_on_cpu=place_model_on_cpu, optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), data_format=nn.data_format) if self.is_training: # Adjust batch size for multiple GPU gpu_count = max(1, len(devices)) bs_per_gpu = max(1, self.get_batch_size() // gpu_count) self.set_batch_size(gpu_count * bs_per_gpu) # Compute losses per GPU gpu_pred_list = [] gpu_losses = [] gpu_loss_gvs = [] for gpu_id in range(gpu_count): with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0'): with tf.device(f'/CPU:0'): # slice on CPU, otherwise all batch data will be transfered to GPU first batch_slice = slice(gpu_id * bs_per_gpu, (gpu_id + 1) * bs_per_gpu) gpu_input_t = self.model.input_t[batch_slice, :, :, :] gpu_target_t = self.model.target_t[ batch_slice, :, :, :] # process model tensors gpu_pred_logits_t, gpu_pred_t = self.model.flow( gpu_input_t) gpu_pred_list.append(gpu_pred_t) gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1, 2, 3]) gpu_losses += [gpu_loss] gpu_loss_gvs += [ nn.gradients(gpu_loss, self.model.get_weights()) ] # Average losses and gradients, and create optimizer update ops with tf.device(models_opt_device): pred = nn.concat(gpu_pred_list, 0) loss = tf.reduce_mean(gpu_losses) loss_gv_op = self.model.opt.get_update_op( nn.average_gv_list(gpu_loss_gvs)) # Initializing training and view functions def train(input_np, target_np): l, _ = nn.tf_sess.run([loss, loss_gv_op], feed_dict={ self.model.input_t: input_np, self.model.target_t: target_np }) return l self.train = train def view(input_np): return nn.tf_sess.run([pred], feed_dict={self.model.input_t: input_np}) self.view = view # initializing sample generators cpu_count = min(multiprocessing.cpu_count(), 8) src_dst_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2 srcdst_generator = SampleGeneratorFaceXSeg( [self.training_data_src_path, self.training_data_dst_path], debug=self.is_debug(), batch_size=self.get_batch_size(), resolution=resolution, face_type=self.face_type, generators_count=src_dst_generators_count, data_format=nn.data_format) src_generator = SampleGeneratorFace( self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=src_generators_count, raise_on_no_data=False) dst_generator = SampleGeneratorFace( self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=dst_generators_count, raise_on_no_data=False) self.set_training_data_generators( [srcdst_generator, src_generator, dst_generator]) #override def get_model_filename_list(self): return self.model.model_filename_list #override def onSave(self): self.model.save_weights() #override def onTrainOneIter(self): image_np, mask_np = self.generate_next_samples()[0] loss = self.train(image_np, mask_np) return (('loss', loss), ) #override def onGetPreview(self, samples): n_samples = min(4, self.get_batch_size(), 800 // self.resolution) srcdst_samples, src_samples, dst_samples = samples image_np, mask_np = srcdst_samples I, M, IM, = [ np.clip(nn.to_data_format(x, "NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np, mask_np] + self.view(image_np)) ] M, IM, = [np.repeat(x, (3, ), -1) for x in [M, IM]] green_bg = np.tile( np.array([0, 1, 0], dtype=np.float32)[None, None, ...], (self.resolution, self.resolution, 1)) result = [] st = [] for i in range(n_samples): ar = I[i] * M[i] + 0.5 * I[i] * (1 - M[i]) + 0.5 * green_bg * ( 1 - M[i]), IM[i], I[i] * IM[i] + 0.5 * I[i] * ( 1 - IM[i]) + 0.5 * green_bg * (1 - IM[i]) st.append(np.concatenate(ar, axis=1)) result += [ ('XSeg training faces', np.concatenate(st, axis=0)), ] if len(src_samples) != 0: src_np, = src_samples D, DM, = [ np.clip(nn.to_data_format(x, "NHWC", self.model_data_format), 0.0, 1.0) for x in ([src_np] + self.view(src_np)) ] DM, = [np.repeat(x, (3, ), -1) for x in [DM]] st = [] for i in range(n_samples): ar = D[i], DM[i], D[i] * DM[i] + 0.5 * D[i] * ( 1 - DM[i]) + 0.5 * green_bg * (1 - DM[i]) st.append(np.concatenate(ar, axis=1)) result += [ ('XSeg src faces', np.concatenate(st, axis=0)), ] if len(dst_samples) != 0: dst_np, = dst_samples D, DM, = [ np.clip(nn.to_data_format(x, "NHWC", self.model_data_format), 0.0, 1.0) for x in ([dst_np] + self.view(dst_np)) ] DM, = [np.repeat(x, (3, ), -1) for x in [DM]] st = [] for i in range(n_samples): ar = D[i], DM[i], D[i] * DM[i] + 0.5 * D[i] * ( 1 - DM[i]) + 0.5 * green_bg * (1 - DM[i]) st.append(np.concatenate(ar, axis=1)) result += [ ('XSeg dst faces', np.concatenate(st, axis=0)), ] return result
def on_initialize(self): device_config = nn.getCurrentDeviceConfig() self.model_data_format = "NCHW" if len( device_config.devices) != 0 and not self.is_debug() else "NHWC" nn.initialize(data_format=self.model_data_format) tf = nn.tf device_config = nn.getCurrentDeviceConfig() devices = device_config.devices self.resolution = resolution = 256 self.face_type = FaceType.WHOLE_FACE place_model_on_cpu = len(devices) == 0 models_opt_device = '/CPU:0' if place_model_on_cpu else '/GPU:0' bgr_shape = nn.get4Dshape(resolution, resolution, 3) mask_shape = nn.get4Dshape(resolution, resolution, 1) # Initializing model classes self.model = XSegNet(name=f'XSeg', resolution=resolution, load_weights=not self.is_first_run(), weights_file_root=self.get_model_root_path(), training=True, place_model_on_cpu=place_model_on_cpu, optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), data_format=nn.data_format) if self.is_training: # Adjust batch size for multiple GPU gpu_count = max(1, len(devices)) bs_per_gpu = max(1, self.get_batch_size() // gpu_count) self.set_batch_size(gpu_count * bs_per_gpu) # Compute losses per GPU gpu_pred_list = [] gpu_losses = [] gpu_loss_gvs = [] for gpu_id in range(gpu_count): with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0'): with tf.device(f'/CPU:0'): # slice on CPU, otherwise all batch data will be transfered to GPU first batch_slice = slice(gpu_id * bs_per_gpu, (gpu_id + 1) * bs_per_gpu) gpu_input_t = self.model.input_t[batch_slice, :, :, :] gpu_target_t = self.model.target_t[ batch_slice, :, :, :] # process model tensors gpu_pred_logits_t, gpu_pred_t = self.model.flow( gpu_input_t) gpu_pred_list.append(gpu_pred_t) gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1, 2, 3]) gpu_losses += [gpu_loss] gpu_loss_gvs += [ nn.gradients(gpu_loss, self.model.get_weights()) ] # Average losses and gradients, and create optimizer update ops with tf.device(models_opt_device): pred = nn.concat(gpu_pred_list, 0) loss = tf.reduce_mean(gpu_losses) loss_gv_op = self.model.opt.get_update_op( nn.average_gv_list(gpu_loss_gvs)) # Initializing training and view functions def train(input_np, target_np): l, _ = nn.tf_sess.run([loss, loss_gv_op], feed_dict={ self.model.input_t: input_np, self.model.target_t: target_np }) return l self.train = train def view(input_np): return nn.tf_sess.run([pred], feed_dict={self.model.input_t: input_np}) self.view = view # initializing sample generators cpu_count = min(multiprocessing.cpu_count(), 8) src_dst_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2 srcdst_generator = SampleGeneratorFaceXSeg( [self.training_data_src_path, self.training_data_dst_path], debug=self.is_debug(), batch_size=self.get_batch_size(), resolution=resolution, face_type=self.face_type, generators_count=src_dst_generators_count, data_format=nn.data_format) src_generator = SampleGeneratorFace( self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=src_generators_count, raise_on_no_data=False) dst_generator = SampleGeneratorFace( self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), sample_process_options=SampleProcessor.Options( random_flip=False), output_sample_types=[ { 'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp': False, 'transform': False, 'channel_type': SampleProcessor.ChannelType.BGR, 'border_replicate': False, 'face_type': self.face_type, 'data_format': nn.data_format, 'resolution': resolution }, ], generators_count=dst_generators_count, raise_on_no_data=False) self.set_training_data_generators( [srcdst_generator, src_generator, dst_generator])