Ejemplo n.º 1
0
 def JOB_TTM_growth(codes, df, factor, db, measure):
     influx = influxdbData()
     save_res = []
     for code in codes:
         code_df = df.loc[df['code'] == code, :].copy()
         code_df['{0}_growthQ'.format(factor)] = \
             code_df.apply(lambda row: FactorBase.cal_growth(
                 row['{0}_last1Q'.format(factor)], row['{0}'.format(factor)]), axis=1)
         code_df['{0}_growthY'.format(factor)] = \
             code_df.apply(lambda row: FactorBase.cal_growth(
                 row['{0}_last4Q'.format(factor)], row['{0}'.format(factor)]), axis=1)
         cols = ['{0}_growthQ'.format(factor), '{0}_growthY'.format(factor)]
         for i in range(1, 8):
             code_df['{0}_growthQ_last{1}Q'.format(factor, i)] = \
                 code_df.apply(lambda row: FactorBase.cal_growth(
                     row['{0}_last{1}Q'.format(factor, i + 1)], row['{0}_last{1}Q'.format(factor, i)]), axis=1)
             cols.append('{0}_growthQ_last{1}Q'.format(factor, i))
         code_df = code_df.loc[:, ['code', 'report_period'] + cols]
         code_df = code_df.replace(np.inf, np.nan)
         code_df = code_df.loc[np.any(pd.notnull(code_df[cols]), axis=1), :]
         if code_df.empty:
             continue
         code_df = code_df.where(pd.notnull(code_df), None)
         print('code: %s' % code)
         r = influx.saveData(code_df, db, measure)
         if r == 'No error occurred...':
             pass
         else:
             save_res.append('%s_growth Error: %s' % (factor, r))
     return save_res
Ejemplo n.º 2
0
 def JOB_factors(df, field, codes, calendar, start, save_db):
     columns = df.columns
     influx = influxdbData()
     save_res = []
     for code in codes:
         code_df = df.loc[df['code'] == code, :].copy()
         insert_dates = calendar - set(code_df.index)
         content = [[np.nan] * len(columns)] * len(insert_dates)
         insert_df = pd.DataFrame(content, columns=columns, index=list(insert_dates))
         code_df = code_df.append(insert_df, ignore_index=False).sort_index()
         code_df = code_df.fillna(method='ffill')
         code_df = code_df.dropna(subset=['code'])
         code_df = code_df.loc[str(start):, ]
         # 所有report_period 为 columns, 去掉第一列(code)
         rps = np.flipud(code_df.columns[1:]).astype('datetime64[ns]')
         rp_keys = np.flipud(code_df.columns[1:])
         # 选择最新的report_period
         code_df['report_period'] = code_df.apply(lambda row: row.dropna().index[-1], axis=1)
         choices = []
         for rp in rp_keys:
             choices.append(code_df[rp].values)
         # 计算 当期 和 去年同期
         code_df['process_rp'] = code_df['report_period'].apply(lambda x: FactorBase.get_former_report_period(x, 0))
         conditions = []
         for rp in rps:
             conditions.append(code_df['process_rp'].values == rp)
         code_df[field] = np.select(conditions, choices, default=np.nan)
         code_df['process_rp'] = code_df['report_period'].apply(lambda x: FactorBase.get_former_report_period(x, 4))
         conditions = []
         for rp in rps:
             conditions.append(code_df['process_rp'].values == rp)
         code_df[field + '_lastY'] = np.select(conditions, choices, default=np.nan)
         # 计算过去每一季
         res_flds = []
         for i in range(1, 13):
             res_field = field + '_last{0}Q'.format(str(i))
             res_flds.append(res_field)
             code_df['process_rp'] = code_df['report_period'].apply(
                 lambda x: FactorBase.get_former_report_period(x, i))
             conditions = []
             for rp in rps:
                 conditions.append(code_df['process_rp'].values == rp)
             code_df[res_field] = np.select(conditions, choices, default=np.nan)
         # 处理储存数据
         code_df = code_df.loc[:, ['code', 'report_period', field, field + '_lastY'] + res_flds]
         code_df['report_period'] = code_df['report_period'].apply(lambda x: x.strftime('%Y%m%d'))
         code_df = code_df.where(pd.notnull(code_df), None)
         print('code: %s' % code)
         r = influx.saveData(code_df, save_db, field)
         if r == 'No error occurred...':
             pass
         else:
             save_res.append('WindIndicator Field: %s  Error: %s' % (field, r))
     return save_res
Ejemplo n.º 3
0
 def get_former_data(series, n_Qs):
     report_period = FactorBase.get_former_report_period(
         series['report_period'], n_Qs)
     if report_period not in series.index:
         return np.nan
     else:
         return series[report_period]