Ejemplo n.º 1
0
 def add_args(parser):
     """Add model-specific arguments to the parser."""
     LSTMModel.add_args(parser)
     parser.add_argument('--lang-embedding-size',
                         type=int,
                         default=32,
                         help='language embedding dimension')
Ejemplo n.º 2
0
 def test_assert_jit_vs_nonjit_(self):
     task, parser = get_dummy_task_and_parser()
     LSTMModel.add_args(parser)
     args = parser.parse_args([])
     args.criterion = ""
     model = LSTMModel.build_model(args, task)
     model.eval()
     scripted_model = torch.jit.script(model)
     scripted_model.eval()
     idx = len(task.source_dictionary)
     iter = 100
     # Inject random input and check output
     seq_len_tensor = torch.randint(1, 10, (iter, ))
     num_samples_tensor = torch.randint(1, 10, (iter, ))
     for i in range(iter):
         seq_len = seq_len_tensor[i]
         num_samples = num_samples_tensor[i]
         src_token = torch.randint(0, idx, (num_samples, seq_len)),
         src_lengths = torch.randint(1, seq_len + 1, (num_samples, ))
         src_lengths, _ = torch.sort(src_lengths, descending=True)
         # Force the first sample to have seq_len
         src_lengths[0] = seq_len
         prev_output_token = torch.randint(0, idx, (num_samples, 1)),
         result = model(src_token[0], src_lengths, prev_output_token[0],
                        None)
         scripted_result = scripted_model(src_token[0], src_lengths,
                                          prev_output_token[0], None)
         self.assertTensorEqual(result[0], scripted_result[0])
         self.assertTensorEqual(result[1], scripted_result[1])
Ejemplo n.º 3
0
 def test_jit_and_export_lstm(self):
     task, parser = get_dummy_task_and_parser()
     LSTMModel.add_args(parser)
     args = parser.parse_args([])
     args.criterion = ""
     model = LSTMModel.build_model(args, task)
     scripted_model = torch.jit.script(model)
     self._test_save_and_load(scripted_model)
Ejemplo n.º 4
0
 def add_args(parser):
     """Add model-specific arguments to the parser."""
     LSTMModel.add_args(parser)
     parser.add_argument('--lang-embedding-size',
                         type=int,
                         default=32,
                         help='language embedding dimension')
     parser.add_argument('--encoder-model-path',
                         type=str,
                         default=None,
                         help='path to pretrained model path')
     parser.add_argument('--fix-encoder', action='store_true')
 def add_args(parser):
     """Add model-specific arguments to the parser."""
     LSTMModel.add_args(parser)
     parser.add_argument('--share-dictionaries', action='store_true',
                         help='share word dictionaries across languages')
     parser.add_argument('--share-encoder-embeddings', action='store_true',
                         help='share encoder embeddings across languages')
     parser.add_argument('--share-decoder-embeddings', action='store_true',
                         help='share decoder embeddings across languages')
     parser.add_argument('--share-encoders', action='store_true',
                         help='share encoders across languages')
     parser.add_argument('--share-decoders', action='store_true',
                         help='share decoders across languages')
     parser.add_argument('--lang-embedding-size', type=int, default=32,
                         help='size of the language embedding')
Ejemplo n.º 6
0
from fairseq.models.lstm import LSTMModel
import pickle
import numpy as np
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
print("loading seq2seq model...")
checkpoint_path = "/local/ssd_1/stc/nlpcc_2017/"

seq2seq = LSTMModel.from_pretrained(checkpoint_path,
                                    checkpoint_file='checkpoint_best.pt',
                                    data_name_or_path=checkpoint_path,
                                    beam=2)
seq2seq.cuda()
seq2seq.eval()

criterion = seq2seq.task.build_criterion(seq2seq.args)
criterion.ret_dist = True
print("Done")


def seq2seq_model(inputs, inputs_idx, sources, sequence_length, id2sen):
    sequence_length = sequence_length - 1
    probs = []
    output_batch = []
    for i in range(len(inputs)):
        target_sentence = sources[i]
        output = seq2seq.get_clm(target_sentence, inputs[i], criterion)
        output_batch.append(output.cpu().data.numpy())
        prob = 1
        for j in range(sequence_length[i] - 1):
            prob *= output[j][inputs_idx[i][j + 1]]
Ejemplo n.º 7
0
# "europarl_fairseq_conv_es-en",
"europarl_fairseq_es-en_large",

# "europarl_fairseq_50k_transxs_es-en",
]

summary = ""
for fname in models:
    for bpe_size in [64, 32000]:
        path = f"/home/scarrion/datasets/scielo/constrained/datasets/bpe.{bpe_size}/{fname}/"

        if "lstm" in path:
            architecture = "LSTM"
            model = LSTMModel.from_pretrained(os.path.join(path, "checkpoints"),
                                               checkpoint_file='checkpoint_best.pt',
                                               data_name_or_path=os.path.join(path, "data-bin"),
                                               bpe='fastbpe',
                                               bpe_codes=os.path.join(path, f"tok/bpe.{bpe_size}/codes.en")
                                               )
        elif "conv" in path:
            architecture = "CNN"
            model = FConvModel.from_pretrained(os.path.join(path, "checkpoints"),
                                                     checkpoint_file='checkpoint_best.pt',
                                                     data_name_or_path=os.path.join(path, "data-bin"),
                                                     bpe='fastbpe',
                                                     bpe_codes=os.path.join(path, f"tok/bpe.{bpe_size}/codes.en")
                                                     )
        else:
            architecture = "Transformer"
            model = TransformerModel.from_pretrained(os.path.join(path, "checkpoints"),
                                                     checkpoint_file='checkpoint_best.pt',
                                                     data_name_or_path=os.path.join(path, "data-bin"),
Ejemplo n.º 8
0
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from fairseq.models.lstm import LSTMModel
import jieba
import pickle as pkl
checkpoint_path = "/local/ssd_1/stc/stc_clm/"

stc = LSTMModel.from_pretrained(checkpoint_path,
                                checkpoint_file='checkpoint_best.pt',
                                data_name_or_path=checkpoint_path + 'stc_ori',
                                beam=5)
stc.eval()

f = open("/local/ssd_1/chengzhang/SA_dialog/dialogue/datas/stc_dict.pkl", 'wb')

pkl.dump(stc.tgt_dict.indices, f)
f.close()
#print(type(stc.tgt_dict.indices), len(stc.tgt_dict.indices), stc.tgt_dict.indices)
#input_sent =
#input_sent = ' '.join(jieba.cut(''.join(input_sent.split()), cut_all=False))

#target_sent =
#target_sent = ' '.join(jieba.cut(''.join(target_sent.split()), cut_all=False))

#criterion = stc.task.build_criterion(stc.args)
#criterion.ret_dist = True
#loss = stc.get_clm(input_sent, target_sent, criterion)
#print(stc.translate(input_sent))
#print(loss)

# target_sent_id = [trg_dict[x] if x in trg_dict.indices else trg_dict.unk_index for x in target_sent.split()]