Ejemplo n.º 1
0
 def test_calc_ref_basic(self):
     layer1 = dataformat.SLDPro(1., 0., 0.)
     layer2 = dataformat.SLDPro(1., 5., 0.)
     sld = [[layer1, layer2]]
     data1 = dataformat.QData(0.05, 0., 0., 0.05 * 0.05)
     data2 = dataformat.QData(0.25, 0., 0., 0.05 * 0.25)
     data3 = dataformat.QData(0.50, 0., 0., 0.05 * 0.50)
     data = [data1, data2, data3]
     a = reflect.Reflect(sld, data)
     a.calc_ref()
     assert_equal(len(a.reflect), 1)
     assert_equal(len(a.reflect[0]), 3)
Ejemplo n.º 2
0
    def calc_ref(self):
        """Calculate reflectometry.

        The calculation of the reflectometry profiles based on the sld profiles calculated from each of the timesteps
        under study.
        """
        if len(self.exp_data) > 0:
            self.reflect = []
            prog = 0
            k = 0
            print("Calculating reflectometry\n[ 0 % ]")
            for i in range(0, len(self.sld_profile)):
                k += 1
                prog_new = np.floor(k / (len(self.sld_profile)) * 100)
                if prog_new > prog + 9:
                    prog = prog_new
                    print("[{} {} % ]".format('#' * int(prog / 10),
                                              int(prog / 10) * 10))
                refl = convolution(self.exp_data, self.sld_profile[i])
                a = []
                for j in range(0, len(self.exp_data)):
                    a.append(
                        dataformat.QData(self.exp_data[j].q, refl[j], 0,
                                         self.exp_data[j].dq))
                self.reflect.append(a)
        else:
            raise ValueError(
                'No q vectors have been defined -- either read a .dat file or get q vectors.'
            )
Ejemplo n.º 3
0
    def read_dat(self):
        """Parses .dat.

        Parses the .dat file, supporting 2, 3, and 4 column files consisting of q, i, di, and dq with comments in lines
        where the first character is a '#'. If there is no .dat file the get_qs() function should be used to generate
        q vectors to allow for the calculation of the reflectometry profile.
        """
        self.expdata = []
        if self.datfile:
            lines = line_count(self.datfile)
            print("Reading DAT file")
            percentage = 0
            print_update(percentage)
            file = open(self.datfile, 'r')
            for i, line in enumerate(file):
                percentage_new = np.floor(i / lines * 100)
                percentage = check_update(percentage, percentage_new)
                if line[0] != '#':
                    line_list = line.split()
                    if len(line_list) == 2:
                        self.expdata.append(
                            dataformat.QData(
                                float(line_list[0]), float(line_list[1]),
                                float(line_list[1]) * (self.ierror / 100),
                                float(line_list[0]) * (self.resolution / 100)))
                    if len(line_list) == 3:
                        self.expdata.append(
                            dataformat.QData(
                                float(line_list[0]), float(line_list[1]),
                                float(line_list[2]),
                                float(line_list[0]) * (self.resolution / 100)))
                    if len(line_list) == 4:
                        self.expdata.append(
                            dataformat.QData(float(line_list[0]),
                                             float(line_list[1]),
                                             float(line_list[2]),
                                             float(line_list[3])))
            print_update(100)
            file.close()
        else:
            print(
                'No DAT file has been given, therefore no comparison will be conducted, please use the get_qs '
                'function. Alternatively the DAT file can be added using the setFile function.'
            )
        return
Ejemplo n.º 4
0
    def return_fitted(self):
        """Return fitted.

        Return the fitted calculated reflectometry data for use.
        """
        self.sim_data_fitted = []
        for i in range(0, len(self.sim_data)):
            a = self.sim_data[i].i * self.scale + self.background
            b = self.sim_data[i].di * self.scale
            self.sim_data_fitted.append(
                dataformat.QData(self.sim_data[i].q, a, b,
                                 self.sim_data[i].dq))
Ejemplo n.º 5
0
 def test_reflect(self):
     layer1 = dataformat.SLDPro(1., 0., 0.)
     layer2 = dataformat.SLDPro(1., 5., 0.)
     sld = [[layer1, layer2]]
     data1 = dataformat.QData(0.05, 0., 0., 0.05 * 0.05)
     data2 = dataformat.QData(0.25, 0., 0., 0.05 * 0.25)
     data3 = dataformat.QData(0.50, 0., 0., 0.05 * 0.50)
     data = [data1, data2, data3]
     a = reflect.Reflect(sld, data)
     assert_almost_equal(a.sld_profile[0][0].thick, 1.)
     assert_almost_equal(a.sld_profile[0][0].real, 0.)
     assert_almost_equal(a.sld_profile[0][0].imag, 0.)
     assert_almost_equal(a.sld_profile[0][1].thick, 1.)
     assert_almost_equal(a.sld_profile[0][1].real, 5.)
     assert_almost_equal(a.sld_profile[0][1].imag, 0.)
     assert_almost_equal(a.exp_data[0].q, 0.05)
     assert_almost_equal(a.exp_data[0].dq, 0.05 * 0.05)
     assert_almost_equal(a.exp_data[1].q, 0.25)
     assert_almost_equal(a.exp_data[1].dq, 0.25 * 0.05)
     assert_almost_equal(a.exp_data[2].q, 0.50)
     assert_almost_equal(a.exp_data[2].dq, 0.50 * 0.05)
Ejemplo n.º 6
0
    def get_qs(self, start=0.005, end=0.5, number=50):
        """Make custom q-vectors.

        If no datfile exists this function should be used to generate a linear-spaced range of q-vector for the
        calculation of the reflectometry over.

        Parameters
        ----------
        start: float, optional
            The first q-vector for which the reflectometry should be calculated.
        end: float, optional
            The last q-vector for which the reflectometry should be calculated.
        number: int, optional
            The number of q-vectors.
        """
        q_values = np.linspace(start, end, number)
        for i in range(0, len(q_values)):
            self.expdata.append(
                dataformat.QData(q_values[i], None, None,
                                 q_values[i] * (self.resolution / 100)))
        return
Ejemplo n.º 7
0
 def test_return_fitted(self):
     data1 = dataformat.QData(0.05, 3., 0.3, 0.05 * 0.05)
     data2 = dataformat.QData(0.25, 2., 0.2, 0.05 * 0.25)
     data3 = dataformat.QData(0.50, 1., 0.1, 0.05 * 0.50)
     data = [data1, data2, data3]
     sdata1 = dataformat.QData(0.05, 1., 0.1, 0.05 * 0.05)
     sdata2 = dataformat.QData(0.25, 2., 0.2, 0.05 * 0.25)
     sdata3 = dataformat.QData(0.50, 3., 0.3, 0.05 * 0.50)
     sdata = [sdata1, sdata2, sdata3]
     a = compare.Compare(data, sdata, 2., 0.)
     a.return_fitted()
     assert_almost_equal(a.sim_data_fitted[0].i, 2.)
     assert_almost_equal(a.sim_data_fitted[1].i, 4.)
     assert_almost_equal(a.sim_data_fitted[2].i, 6.)
     assert_almost_equal(a.sim_data_fitted[0].di, 0.2)
     assert_almost_equal(a.sim_data_fitted[1].di, 0.4)
     assert_almost_equal(a.sim_data_fitted[2].di, 0.6)
Ejemplo n.º 8
0
    def average_ref(self):
        """Average reflectometry profiles.

        The averaging of the reflectometry profiles as calculated by the calc_ref() function.
        """
        if len(self.exp_data) > 0:
            self.averagereflect = []
            for i in range(0, len(self.reflect[0])):
                self.averagereflect.append(
                    dataformat.QData(self.exp_data[i].q, 0, 0,
                                     self.exp_data[i].dq))
            for i in range(0, len(self.reflect[0])):
                for j in range(0, len(self.reflect)):
                    self.averagereflect[i].i += self.reflect[j][i].i
                self.averagereflect[i].i /= len(self.reflect)
                for j in range(0, len(self.reflect)):
                    self.averagereflect[i].di += np.square(
                        self.reflect[j][i].i - self.averagereflect[i].i)
                self.averagereflect[i].di = np.sqrt(
                    1. / (len(self.reflect) - 1) * self.averagereflect[i].di)
        else:
            raise ValueError(
                'No q vectors have been defined -- either read a .dat file or get q vectors.'
            )
Ejemplo n.º 9
0
 def test_compare(self):
     data1 = dataformat.QData(0.05, 3., 0.3, 0.05 * 0.05)
     data2 = dataformat.QData(0.25, 2., 0.2, 0.05 * 0.25)
     data3 = dataformat.QData(0.50, 1., 0.1, 0.05 * 0.50)
     data = [data1, data2, data3]
     sdata1 = dataformat.QData(0.05, 1., 0.1, 0.05 * 0.05)
     sdata2 = dataformat.QData(0.25, 2., 0.2, 0.05 * 0.25)
     sdata3 = dataformat.QData(0.50, 3., 0.3, 0.05 * 0.50)
     sdata = [sdata1, sdata2, sdata3]
     a = compare.Compare(data, sdata, 1., 0.)
     assert_almost_equal(a.exp_data[0].q, 0.05)
     assert_almost_equal(a.exp_data[0].i, 3.)
     assert_almost_equal(a.exp_data[0].di, 0.3)
     assert_almost_equal(a.exp_data[0].dq, 0.05 * 0.05)
     assert_almost_equal(a.exp_data[1].q, 0.25)
     assert_almost_equal(a.exp_data[1].i, 2.)
     assert_almost_equal(a.exp_data[1].di, 0.2)
     assert_almost_equal(a.exp_data[1].dq, 0.05 * 0.25)
     assert_almost_equal(a.exp_data[2].q, 0.50)
     assert_almost_equal(a.exp_data[2].i, 1.)
     assert_almost_equal(a.exp_data[2].di, 0.1)
     assert_almost_equal(a.exp_data[2].dq, 0.05 * 0.50)
     assert_almost_equal(a.sim_data[0].q, 0.05)
     assert_almost_equal(a.sim_data[0].i, 1.)
     assert_almost_equal(a.sim_data[0].di, 0.1)
     assert_almost_equal(a.sim_data[0].dq, 0.05 * 0.05)
     assert_almost_equal(a.sim_data[1].q, 0.25)
     assert_almost_equal(a.sim_data[1].i, 2.)
     assert_almost_equal(a.sim_data[1].di, 0.2)
     assert_almost_equal(a.sim_data[1].dq, 0.05 * 0.25)
     assert_almost_equal(a.sim_data[2].q, 0.50)
     assert_almost_equal(a.sim_data[2].i, 3.)
     assert_almost_equal(a.sim_data[2].di, 0.3)
     assert_almost_equal(a.sim_data[2].dq, 0.05 * 0.50)
     assert_almost_equal(a.scale, 1.)
     assert_almost_equal(a.background, 0.)
Ejemplo n.º 10
0
 def test_average_reflect(self):
     data11 = dataformat.QData(0.05, 0.1, 0., 0.05 * 0.05)
     data12 = dataformat.QData(0.25, 0.05, 0., 0.05 * 0.25)
     data13 = dataformat.QData(0.50, 0.01, 0., 0.05 * 0.50)
     data1 = [data11, data12, data13]
     data21 = dataformat.QData(0.05, 0.12, 0., 0.05 * 0.05)
     data22 = dataformat.QData(0.25, 0.03, 0., 0.05 * 0.25)
     data23 = dataformat.QData(0.50, 0.015, 0., 0.05 * 0.50)
     data2 = [data21, data22, data23]
     data31 = dataformat.QData(0.05, 0.14, 0., 0.05 * 0.05)
     data32 = dataformat.QData(0.25, 0.07, 0., 0.05 * 0.25)
     data33 = dataformat.QData(0.50, 0.005, 0., 0.05 * 0.50)
     data3 = [data31, data32, data33]
     layer1 = dataformat.SLDPro(1., 0., 0.)
     layer2 = dataformat.SLDPro(1., 5., 0.)
     sld = [[layer1, layer2]]
     ddata1 = dataformat.QData(0.05, 0., 0., 0.05 * 0.05)
     ddata2 = dataformat.QData(0.25, 0., 0., 0.05 * 0.25)
     ddata3 = dataformat.QData(0.50, 0., 0., 0.05 * 0.50)
     ddata = [ddata1, ddata2, ddata3]
     a = reflect.Reflect(sld, ddata)
     a.reflect = [data1, data2, data3]
     a.average_ref()
     assert_almost_equal(a.averagereflect[0].i, 0.12)
     assert_almost_equal(a.averagereflect[1].i, 0.05)
     assert_almost_equal(a.averagereflect[2].i, 0.01)
Ejemplo n.º 11
0
 def test_qdata(self):
     a = dataformat.QData(1., 2., 3., 4.)
     assert_equal(a.q, 1.)
     assert_equal(a.i, 2.)
     assert_equal(a.di, 3.)
     assert_equal(a.dq, 4.)
Ejemplo n.º 12
0
 def test_fit_noi(self):
     data11 = dataformat.QData(0.05, 0.1, 0., 0.05 * 0.05)
     data12 = dataformat.QData(0.25, 0.05, 0., 0.05 * 0.25)
     data13 = dataformat.QData(0.50, 0.01, 0., 0.05 * 0.50)
     data1 = [data11, data12, data13]
     data21 = dataformat.QData(0.05, 0.12, 0., 0.05 * 0.05)
     data22 = dataformat.QData(0.25, 0.03, 0., 0.05 * 0.25)
     data23 = dataformat.QData(0.50, 0.015, 0., 0.05 * 0.50)
     data2 = [data21, data22, data23]
     data31 = dataformat.QData(0.05, 0.14, 0., 0.05 * 0.05)
     data32 = dataformat.QData(0.25, 0.07, 0., 0.05 * 0.25)
     data33 = dataformat.QData(0.50, 0.005, 0., 0.05 * 0.50)
     data3 = [data31, data32, data33]
     layer1 = dataformat.SLDPro(1., 0., 0.)
     layer2 = dataformat.SLDPro(1., 5., 0.)
     sld = [[layer1, layer2]]
     ddata1 = dataformat.QData(0.05, 0., 0., 0.05 * 0.05)
     ddata2 = dataformat.QData(0.25, 0., 0., 0.05 * 0.25)
     ddata3 = dataformat.QData(0.50, 0., 0., 0.05 * 0.50)
     ddata = [ddata1, ddata2, ddata3]
     a = reflect.Reflect(sld, ddata)
     a.reflect = [data1, data2, data3]
     a.average_ref()
     ddata1 = dataformat.QData(0.05, None, 0., 0.05 * 0.05)
     ddata2 = dataformat.QData(0.25, 0., 0., 0.05 * 0.25)
     ddata3 = dataformat.QData(0.50, 0., 0., 0.05 * 0.50)
     ddata = [ddata1, ddata2, ddata3]
     k = compare.Compare(ddata, a.averagereflect, 1, 0)
     with self.assertRaises(ValueError) as context:
         k.fit()
     self.assertTrue(
         'No experimental data has been set for comparison, please read in a a .dat file.'
         in str(context.exception))
Ejemplo n.º 13
0
 def test_fit_noq(self):
     data11 = dataformat.QData(0.05, 0.1, 0., 0.05 * 0.05)
     data12 = dataformat.QData(0.25, 0.05, 0., 0.05 * 0.25)
     data13 = dataformat.QData(0.50, 0.01, 0., 0.05 * 0.50)
     data1 = [data11, data12, data13]
     data21 = dataformat.QData(0.05, 0.12, 0., 0.05 * 0.05)
     data22 = dataformat.QData(0.25, 0.03, 0., 0.05 * 0.25)
     data23 = dataformat.QData(0.50, 0.015, 0., 0.05 * 0.50)
     data2 = [data21, data22, data23]
     data31 = dataformat.QData(0.05, 0.14, 0., 0.05 * 0.05)
     data32 = dataformat.QData(0.25, 0.07, 0., 0.05 * 0.25)
     data33 = dataformat.QData(0.50, 0.005, 0., 0.05 * 0.50)
     data3 = [data31, data32, data33]
     layer1 = dataformat.SLDPro(1., 0., 0.)
     layer2 = dataformat.SLDPro(1., 5., 0.)
     sld = [[layer1, layer2]]
     ddata1 = dataformat.QData(0.05, 0., 0., 0.05 * 0.05)
     ddata2 = dataformat.QData(0.25, 0., 0., 0.05 * 0.25)
     ddata3 = dataformat.QData(0.50, 0., 0., 0.05 * 0.50)
     ddata = [ddata1, ddata2, ddata3]
     a = reflect.Reflect(sld, ddata)
     a.reflect = [data1, data2, data3]
     a.average_ref()
     ddata = []
     k = compare.Compare(ddata, a.averagereflect, 1, 0)
     with self.assertRaises(ValueError) as context:
         k.fit()
     self.assertTrue(
         'No q vectors have been defined -- either read a .dat file or get q vectors.'
         in str(context.exception))