Ejemplo n.º 1
0
class FargoMovieMaker:

    def __init__(self, inputDir, outputDir, batchSize):
        self.outputDir = outputDir
        self.batchSize = batchSize
        self.parser = FargoParser(inputDir, batchSize)

        secondaryOrbit = np.loadtxt(inputDir + "/planet0.dat")
        secondaryX = secondaryOrbit[:, 1]
        secondaryY = secondaryOrbit[:, 2]

        self.secondaryRadius = np.sqrt(np.add(np.square(secondaryX), np.square(secondaryY)))
        self.secondaryTheta = np.arctan2(secondaryY, secondaryX)

        params = self.parser.getParams()
        self.params = params
        self.outputDir = outputDir

    def go(self, start, end):

        start = (start / self.batchSize) * self.batchSize
        end = (end / self.batchSize + 1) * self.batchSize
        cur = 0

        # skip to the start
        for _ in range(start / self.batchSize):
            cur += self.batchSize
            self.parser.getNextBatch()

        for _ in range((end - start) / self.batchSize):
            dens, _, _ = self.parser.getNextBatch()

            r, theta = np.meshgrid(self.params['radialIntervals'], self.params['thetaIntervals'])
            plt.ioff()
            #-- Plot... ------------------------------------------------
            for i in range(len(dens)):
                fig = plt.figure()
                ax = plt.subplot(111, polar=True)
                ax.contourf(theta, r, np.log(dens[i]).transpose(), cmap=plt.cm.afmhot)
                ax.scatter([self.secondaryTheta[cur]], [self.secondaryRadius[cur]], s=150)
                ax.set_rmax(1.5)
                #ax.set_title(r"$\theta_{sec}=" + "{0:.2f}$ rad".format(self.secondaryTheta[cur] % 6.283), va='bottom')
                plt.savefig(self.outputDir + "/figs/dens" + str(cur) + ".png")
                plt.close(fig)

                cur += 1

    def finish(self):
        os.system("tar -zcvf " + self.outputDir + "/animation.tar.gz " + self.outputDir + "/figs")
Ejemplo n.º 2
0
    def __init__(self, inputDir, outputDir, batchSize):
        self.outputDir = outputDir
        self.batchSize = batchSize
        self.parser = FargoParser(inputDir, batchSize)

        secondaryOrbit = np.loadtxt(inputDir + "/planet0.dat")
        secondaryX = secondaryOrbit[:, 1]
        secondaryY = secondaryOrbit[:, 2]

        self.secondaryRadius = np.sqrt(np.add(np.square(secondaryX), np.square(secondaryY)))
        self.secondaryTheta = np.arctan2(secondaryY, secondaryX)

        params = self.parser.getParams()
        self.params = params
        self.outputDir = outputDir
    def __init__(self, inputDir, outputDir, plotDir, batchSize):
        self.outputDir = outputDir

        self.parser = FargoParser(inputDir, batchSize)

        params = self.parser.getParams()
        radIntervals = params['radialIntervals']
        numOutputs = params['totalNumOutputs']
        timeIntervals = np.linspace(0, numOutputs/5.0, num=numOutputs)

        self.params = params

        self.outputDir = outputDir

        self.plotter = FargoPlotter(radIntervals * 20.0, timeIntervals, plotDir, 'Radius, AU', 'Time, binary periods')
class FargoDiagnosticsRunner:

    def __init__(self, inputDir, outputDir, plotDir, batchSize):
        self.outputDir = outputDir

        self.parser = FargoParser(inputDir, batchSize)

        params = self.parser.getParams()
        radIntervals = params['radialIntervals']
        numOutputs = params['totalNumOutputs']
        timeIntervals = np.linspace(0, numOutputs/5.0, num=numOutputs)

        self.params = params

        self.outputDir = outputDir

        self.plotter = FargoPlotter(radIntervals * 20.0, timeIntervals, plotDir, 'Radius, AU', 'Time, binary periods')

    def _getDiagnostic(self, fmt):
        filePaths = glob.glob(self.outputDir + fmt)
        sortedPaths = sorted(filePaths, key=self.parser._extractFileIndex)

        arrays = [np.load(path) for path in sortedPaths]
        if len(arrays) == 0:
            print "didn't find any arrays for format " + fmt
            return []

        return np.concatenate(arrays)

    def runBatches(self):
        i = 0
        while self.parser.hasRemainingBatches():
            dens, vrad, vtheta = self.parser.getNextBatch()
            calculations = fd.computeDiagnostics(self.params['radialEdges'], self.params['radialIntervals'],
                                                             self.params['thetaIntervals'], dens, vrad, vtheta)

            avgDens = np.average(dens, axis=2)

            for j in range(0, len(dens), 20):
                print 'plotting'
                print "length of radialDens: " + str(len(calculations['radialDens']))

                self.plotter.threePanelVsRadius(avgDens[j],
                                                calculations['radialEccMK'][j], calculations['radialEccLubow'][j],
                                                calculations['radialPeriMK'][j], calculations['radialPeriLubow'][j],
                                                "%.1f" % ((i + j)/5.0), 'threePanel', i + j)

            np.save(self.outputDir + '/radialEccMK' + str(i), calculations['radialEccMK'])
            np.save(self.outputDir + '/radialEccLubow' + str(i), calculations['radialEccLubow'])

            np.save(self.outputDir + '/radialPeriMK' + str(i), calculations['radialPeriMK'])
            np.save(self.outputDir + '/radialPeriLubow' + str(i), calculations['radialPeriLubow'])

            np.save(self.outputDir + '/radialDens' + str(i), calculations['radialDens'])
            np.save(self.outputDir + '/diskEccMK' + str(i), calculations['diskEccMK'])
            np.save(self.outputDir + '/diskPeriMK' + str(i), calculations['diskPeriMK'])

            np.save(self.outputDir + '/diskEccLubow' + str(i), calculations['diskEccLubow'])
            np.save(self.outputDir + '/diskPeriLubow' + str(i), calculations['diskPeriLubow'])

            np.save(self.outputDir + '/totalMass' + str(i), calculations['totalMass'])

            np.save(self.outputDir + '/diskRadius90' + str(i), calculations['diskRad90'])
            np.save(self.outputDir + '/diskRadius95' + str(i), calculations['diskRad95'])

            np.save(self.outputDir + '/lubowVsin' + str(i), calculations['lubowVsin'])
            np.save(self.outputDir + '/lubowVcos' + str(i), calculations['lubowVcos'])

            i += len(dens)


    def runDiskTime(self):
        diagnosticTypes = [
            {
                'fileFormat': '/diskEccMK*.npy',
                'arrayFilename': 'eccMKVsTime.npy',
                'yName': 'diskEccMK',
                'yLabel': 'Disk eccentricity (Mueller-Kley)',
                'title': 'Disk eccentricity vs time',
                'plot': True
            },
            {
                'fileFormat': '/diskPeriMK*.npy',
                'arrayFilename': 'periMKVsTime.npy',
                'yName': 'diskPeriMK',
                'yLabel': 'Disk periastron angle (MK)',
                'title': 'Disk periastron vs time',
                'plot': True
            },
            {
                'fileFormat': '/diskEccLubow*.npy',
                'arrayFilename': 'eccLubowVsTime.npy',
                'yName': 'diskEccLubow',
                'yLabel': 'Disk eccentricity (Lubow)',
                'title': 'Disk eccentricity vs time',
                'plot': True
            },
            {
                'fileFormat': '/diskPeriLubow*.npy',
                'arrayFilename': 'periLubowVsTime.npy',
                'yName': 'diskPeriLubow',
                'yLabel': 'Disk periastron angle (Lubow)',
                'title': 'Disk periastron vs time',
                'plot': True
            },
            {
                'fileFormat': '/totalMass*.npy',
                'arrayFilename': 'massVsTime.npy',
                'yName': 'totalMass',
                'yLabel': 'Disk mass (code units)',
                'title': 'Disk mass vs time',
                'plot': True
            },
            {
                'fileFormat': '/diskRadius90*.npy',
                'arrayFilename': 'radius90VsTime.npy',
                'yName': 'diskRadius90',
                'yLabel': 'Disk radius (a, 90%)',
                'title': 'Disk radius vs time',
                'plot': True
            },
            {
                'fileFormat': '/diskRadius95*.npy',
                'arrayFilename': 'radius95VsTime.npy',
                'yName': 'diskRadius95',
                'yLabel': 'Disk radius (a, 95%)',
                'title': 'Disk radius vs time',
                'plot': True
            },
            {
                'fileFormat': '/lubowVsin*.npy',
                'arrayFilename': 'vsinVsTime.npy',
                'yName': 'lubowVsin',
                'yLabel': 'Lubow V_sin',
                'title': 'Lubow V_sin',
                'plot': False
            },
            {
                'fileFormat': '/lubowVcos*.npy',
                'arrayFilename': 'vcosVsTime.npy',
                'yName': 'lubowVcos',
                'yLabel': 'Lubow V_cos',
                'title': 'Lubow V_cos',
                'plot': False
            }
        ]

        diags = {}

        for type in diagnosticTypes:
            diag = self._getDiagnostic(type['fileFormat'])
            diags[type['yName']] = diag

            np.save(self.outputDir + '/' + type['arrayFilename'], diag)

        for type in diagnosticTypes:
            diag = diags[type['yName']]
            if type['plot']:
                print "plotting vs time " + type['yName']
                self.plotter.vsTime(diag, type['yName'], type['yLabel'], type['title'])

        eccMK = diags['diskEccMK']
        periMK = diags['diskPeriMK']
        print "plotting twopanel vs time"
        self.plotter.twoPanelVsTime(eccMK, periMK, "eccPeriMK_vs_time")