Ejemplo n.º 1
0
def train():
    train_args, model_args = ConfigSection(), ConfigSection()
    ConfigLoader.load_config(config_dir, {"text_class": train_args})

    # load dataset
    print("Loading data...")
    ds_loader = ClassDatasetLoader(train_data_dir)
    data = ds_loader.load()
    print(data[0])

    # pre-process data
    pre = ClassPreprocess()
    data_train = pre.run(data, pickle_path=save_dir)
    print("vocabulary size:", pre.vocab_size)
    print("number of classes:", pre.num_classes)

    model_args["num_classes"] = pre.num_classes
    model_args["vocab_size"] = pre.vocab_size

    # construct model
    print("Building model...")
    model = CNNText(model_args)

    # ConfigSaver().save_config(config_dir, {"text_class_model": model_args})

    # train
    print("Training...")

    # 1
    # trainer = ClassificationTrainer(train_args)

    # 2
    trainer = ClassificationTrainer(epochs=train_args["epochs"],
                                    batch_size=train_args["batch_size"],
                                    validate=train_args["validate"],
                                    use_cuda=train_args["use_cuda"],
                                    pickle_path=save_dir,
                                    save_best_dev=train_args["save_best_dev"],
                                    model_name=model_name,
                                    loss=Loss("cross_entropy"),
                                    optimizer=Optimizer("SGD",
                                                        lr=0.001,
                                                        momentum=0.9))
    trainer.train(model, data_train)

    print("Training finished!")

    saver = ModelSaver(os.path.join(save_dir, model_name))
    saver.save_pytorch(model)
    print("Model saved!")
Ejemplo n.º 2
0
def train():
    train_args, model_args = ConfigSection(), ConfigSection()
    ConfigLoader.load_config(config_dir, {"text_class": train_args})

    # load dataset
    print("Loading data...")
    data = TextClassifyDataSet(load_func=ClassDataSetLoader.load)
    data.load(train_data_dir)

    print("vocabulary size:", len(data.word_vocab))
    print("number of classes:", len(data.label_vocab))
    save_pickle(data.word_vocab, save_dir, "word2id.pkl")
    save_pickle(data.label_vocab, save_dir, "label2id.pkl")

    model_args["num_classes"] = len(data.label_vocab)
    model_args["vocab_size"] = len(data.word_vocab)

    # construct model
    print("Building model...")
    model = CNNText(model_args)

    # train
    print("Training...")
    trainer = ClassificationTrainer(epochs=train_args["epochs"],
                                    batch_size=train_args["batch_size"],
                                    validate=train_args["validate"],
                                    use_cuda=train_args["use_cuda"],
                                    pickle_path=save_dir,
                                    save_best_dev=train_args["save_best_dev"],
                                    model_name=model_name,
                                    loss=Loss("cross_entropy"),
                                    optimizer=Optimizer("SGD", lr=0.001, momentum=0.9))
    trainer.train(model, data)

    print("Training finished!")

    saver = ModelSaver(os.path.join(save_dir, model_name))
    saver.save_pytorch(model)
    print("Model saved!")
Ejemplo n.º 3
0
# construct model
model_args = {
    'num_classes': n_classes,
    'vocab_size': vocab_size
}
model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size)

# construct trainer
train_args = {
    "epochs": 3,
    "batch_size": 16,
    "pickle_path": data_dir,
    "validate": False,
    "save_best_dev": False,
    "model_saved_path": None,
    "use_cuda": True,
    "loss": Loss("cross_entropy"),
    "optimizer": Optimizer("Adam", lr=0.001)
}
trainer = ClassificationTrainer(**train_args)

# start training
trainer.train(model, train_data=train_set, dev_data=dev_set)

# predict using model
data_infer = [x[0] for x in data]
infer = ClassificationInfer(data_dir)
labels_pred = infer.predict(model.cpu(), data_infer)
print(labels_pred)
Ejemplo n.º 4
0
                                       dim=attention_unit,
                                       num_vec=attention_hops)
        self.mlp = MLP(
            size_layer=[lstm_hidden_size * 2 * attention_hops, nfc, class_num])

    def forward(self, x):
        x_emb = self.embedding(x)
        output = self.lstm(x_emb)
        after_attention, penalty = self.attention(output, x)
        after_attention = after_attention.view(after_attention.size(0), -1)
        output = self.mlp(after_attention)
        return output

    def loss(self, predict, ground_truth):
        print("predict:%s; g:%s" %
              (str(predict.size()), str(ground_truth.size())))
        print(ground_truth)
        return F.cross_entropy(predict, ground_truth)


train_args = ConfigSection()
ConfigLoader("good path").load_config('config.cfg', {"train": train_args})
train_args['vocab'] = len(word2index)

trainer = ClassificationTrainer(**train_args.data)

# for k in train_args.__dict__.keys():
#     print(k, train_args[k])
model = SELF_ATTENTION_YELP_CLASSIFICATION(train_args)
trainer.train(model, train_data, dev_data)