Ejemplo n.º 1
0
    def process(self,
                paths: Union[str, Dict[str, str]],
                src_vocab_opt: VocabularyOption = None,
                tgt_vocab_opt: VocabularyOption = None,
                src_embed_opt: EmbeddingOption = None,
                char_level_op=False):

        paths = check_dataloader_paths(paths)
        datasets = {}
        info = DataBundle()
        for name, path in paths.items():
            dataset = self.load(path)
            datasets[name] = dataset

        def wordtochar(words):
            chars = []
            for word in words:
                word = word.lower()
                for char in word:
                    chars.append(char)
                chars.append('')
            chars.pop()
            return chars

        input_name, target_name = 'words', 'target'
        info.vocabs = {}

        # 就分隔为char形式
        if char_level_op:
            for dataset in datasets.values():
                dataset.apply_field(wordtochar,
                                    field_name="words",
                                    new_field_name='chars')
        src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(
            **src_vocab_opt)
        src_vocab.from_dataset(datasets['train'], field_name='words')
        src_vocab.index_dataset(*datasets.values(), field_name='words')

        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
        tgt_vocab.from_dataset(datasets['train'], field_name='target')
        tgt_vocab.index_dataset(*datasets.values(), field_name='target')

        info.vocabs = {"words": src_vocab, "target": tgt_vocab}

        info.datasets = datasets

        if src_embed_opt is not None:
            embed = EmbedLoader.load_with_vocab(**src_embed_opt,
                                                vocab=src_vocab)
            info.embeddings['words'] = embed

        for name, dataset in info.datasets.items():
            dataset.set_input("words")
            dataset.set_target("target")

        return info
Ejemplo n.º 2
0
    def process(self,
                paths,
                train_ds: Iterable[str] = None,
                src_vocab_op: VocabularyOption = None,
                tgt_vocab_op: VocabularyOption = None,
                src_embed_op: EmbeddingOption = None):
        input_name, target_name = 'words', 'target'
        src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(
            **src_vocab_op)
        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)

        info = DataBundle(datasets=self.load(paths))
        _train_ds = [info.datasets[name] for name in train_ds
                     ] if train_ds else info.datasets.values()
        src_vocab.from_dataset(*_train_ds, field_name=input_name)
        tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
        src_vocab.index_dataset(*info.datasets.values(),
                                field_name=input_name,
                                new_field_name=input_name)
        tgt_vocab.index_dataset(*info.datasets.values(),
                                field_name=target_name,
                                new_field_name=target_name)
        info.vocabs = {input_name: src_vocab, target_name: tgt_vocab}

        if src_embed_op is not None:
            src_embed_op.vocab = src_vocab
            init_emb = EmbedLoader.load_with_vocab(**src_embed_op)
            info.embeddings[input_name] = init_emb

        for name, dataset in info.datasets.items():
            dataset.set_input(input_name)
            dataset.set_target(target_name)
        return info
Ejemplo n.º 3
0
    def process(self, paths: Union[str, Dict[str, str]],
                train_ds: Iterable[str] = None,
                src_vocab_op: VocabularyOption = None,
                tgt_vocab_op: VocabularyOption = None,
                embed_opt: EmbeddingOption = None,
                char_level_op=False,
                split_dev_op=True
                ):
        paths = check_dataloader_paths(paths)
        datasets = {}
        info = DataBundle(datasets=self.load(paths))
        src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op)
        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op)
        _train_ds = [info.datasets[name]
                     for name in train_ds] if train_ds else info.datasets.values()

        def wordtochar(words):
            chars = []
            for word in words:
                word = word.lower()
                for char in word:
                    chars.append(char)
                chars.append('')
            chars.pop()
            return chars

        input_name, target_name = 'words', 'target'
        info.vocabs={}
        #就分隔为char形式
        if char_level_op:
            for dataset in info.datasets.values():
                dataset.apply_field(wordtochar, field_name="words",new_field_name='chars')
        # if embed_opt is not None:
        #     embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab)
        #     info.embeddings['words'] = embed
        else:
            src_vocab.from_dataset(*_train_ds, field_name=input_name)
            src_vocab.index_dataset(*info.datasets.values(),field_name=input_name, new_field_name=input_name)
            info.vocabs[input_name]=src_vocab

        tgt_vocab.from_dataset(*_train_ds, field_name=target_name)
        tgt_vocab.index_dataset(
            *info.datasets.values(),
            field_name=target_name, new_field_name=target_name)

        info.vocabs[target_name]=tgt_vocab

        if split_dev_op:
            info.datasets['train'], info.datasets['dev'] = info.datasets['train'].split(0.1, shuffle=False)

        for name, dataset in info.datasets.items():
            dataset.set_input("words")
            dataset.set_target("target")

        return info
Ejemplo n.º 4
0
    def process(self,
                paths: Union[str, Dict[str, str]],
                src_vocab_opt: VocabularyOption = None,
                tgt_vocab_opt: VocabularyOption = None,
                src_embed_opt: EmbeddingOption = None):

        paths = check_dataloader_paths(paths)
        datasets = {}
        info = DataBundle()
        for name, path in paths.items():
            dataset = self.load(path)
            datasets[name] = dataset

        src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(
            **src_vocab_opt)
        src_vocab.from_dataset(datasets['train'], field_name='words')
        src_vocab.index_dataset(*datasets.values(), field_name='words')

        tgt_vocab = Vocabulary(unknown=None, padding=None) \
            if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt)
        tgt_vocab.from_dataset(datasets['train'], field_name='target')
        tgt_vocab.index_dataset(*datasets.values(), field_name='target')

        info.vocabs = {"words": src_vocab, "target": tgt_vocab}

        info.datasets = datasets

        if src_embed_opt is not None:
            embed = EmbedLoader.load_with_vocab(**src_embed_opt,
                                                vocab=src_vocab)
            info.embeddings['words'] = embed

        for name, dataset in info.datasets.items():
            dataset.set_input("words")
            dataset.set_target("target")

        return info