Ejemplo n.º 1
0
 def before_fit(self, **kwargs):
     self.train_pca = ifnone(
         self.train_pca,
         self.do_pca(get_xy(self.learn.dls)[0], do_train=True))
     self.train_trace = scatter(self.train_pca,
                                name='Training data',
                                mode='markers',
                                marker_color='#539dcc',
                                marker_size=1.5 if self.is_3d else 4)
     self.weight_pca = self.do_pca(self.learn.model.weights)
     self.weight_trace = scatter(self.weight_pca,
                                 name='SOM weights',
                                 mode='markers',
                                 marker_color='#e58368',
                                 marker_size=3 if self.is_3d else 6)
     expl_var = str(
         tuple(
             map(lambda pct: f'{pct:.0f}%',
                 self.pca.explained_variance_ratio_ * 100)))[1:-1]
     layout = go.Layout(
         title=f"SOM Visualization ({expl_var} explained variance)")
     self.fig = go.FigureWidget([self.train_trace, self.weight_trace],
                                layout=layout)
     self.fig.update_layout(margin=dict(l=20, r=20, t=20, b=20),
                            paper_bgcolor="LightSteelBlue")
Ejemplo n.º 2
0
    def batch_stats(self, funcs=None):
        "Grab a batch of data and call reduction function `func` per channel"
        funcs = ifnone(funcs, [torch.mean, torch.std])
        ds_type = DatasetType.Valid if self.valid_dl else DatasetType.Train
        x = self.one_batch(ds_type=ds_type, denorm=False)[0].cpu()

        def multi_channel_view(x):
            return x.transpose(3, 0).contiguous().view(x.shape[3], -1)

        return [func(multi_channel_view(x), 1) for func in funcs]
Ejemplo n.º 3
0
    def on_epoch_end(self, epoch: int, smooth_loss: Tensor,
                     last_metrics: MetricsList, **kwargs: Any) -> bool:
        last_metrics = ifnone(last_metrics, [])
        stats = [
            str(stat) if isinstance(stat, int) else
            '#na#' if stat is None else f'{stat:.6f}' for name, stat in zip(
                self.learn.recorder.names, [epoch, smooth_loss] + last_metrics)
        ]

        SendData.sendMessage(key=self.key,
                             auth_token=self.auth_token,
                             params=stats,
                             ModelName=self.ModelName)
Ejemplo n.º 4
0
 def before_fit(self):
     self.train_pca = ifnone(
         self.train_pca,
         self.do_pca(get_xy(self.learn.dls)[0], do_train=True))
     self.weight_pca = self.do_pca(self.learn.model.weights)
     plt.ion()
     self.fig = plt.figure()
     self.train_axis = self.fig.add_subplot(
         111, projection='3d' if self.is_3d else None)
     # Draw weights
     self.weight_scatter = self.train_axis.scatter(*tuple(
         [self.weight_pca[:, i] for i in range(self.weight_pca.shape[-1])]),
                                                   c="#e58368",
                                                   zorder=100)
     # Draw training data (once)
     self.train_axis.scatter(*tuple(
         [self.train_pca[:, i] for i in range(self.train_pca.shape[-1])]),
                             c="#539dcc")
Ejemplo n.º 5
0
    def on_epoch_end(self, epoch: int, smooth_loss: Tensor,
                     last_metrics: MetricsList, **kwargs: Any) -> bool:
        if (time.time() - self.start_time > 3000):
            self.start_time = time.time()
            self.key, self.auth_token = SendData.signin(email=self.email,
                                                        password=self.password)

        last_metrics = ifnone(last_metrics, [])
        self.stats = [
            str(stat) if isinstance(stat, int) else
            '#na#' if stat is None else f'{stat:.6f}' for name, stat in zip(
                self.learn.recorder.names, [epoch, smooth_loss] + last_metrics)
        ]

        SendData.sendMessage(key=self.key,
                             auth_token=self.auth_token,
                             params=self.stats,
                             ModelName=self.ModelName)