def handle_movie_review(movieReview):
    path = 'sgd/static/trained/natural-language-processor'
    learn = learner.load_learner(path)
    predictions = dict()
    predictions['raw'] = learn.predict(movieReview)
    predictions['originalReview'] = movieReview
    return predictions
Ejemplo n.º 2
0
def _classification(image_rgb, weights):
    """Helper function. Classifies the input image according to `weights`.

    Parameters
    ----------
    image_rgb : 3D array
        RGB image of the lepidopteran (ruler and tags cropped out).
    weights : str or pathlib.Path
        Path of the file containing weights.

    Returns
    -------
    prediction : int
        Prediction obtained with the given weights.

    Notes
    -----
    If a string is given in `weights`, it will be converted into a pathlib.Path
    object.
    """
    if isinstance(weights, str):
        weights = Path(weights)

    connection.download_weights(weights)

    # parameters here were defined when training the networks.
    learner = load_learner(fname=weights)

    _, prediction, _ = learner.predict(image_rgb)

    return int(prediction)
Ejemplo n.º 3
0
def handle_uploaded_file(image):
    imageLocation = save(image)
    image = open_image(imageLocation)
    path = 'sgd/static/trained/comp-vision'
    learn = learner.load_learner(path)
    predictions = dict()
    predictions['raw'] = learn.predict(image)
    predictions['friendly'] = getFriendlyProbabilities(predictions['raw'])
    return predictions
Ejemplo n.º 4
0
def predict(url):
    response = requests.get(url)
    img = Image.open(BytesIO(response.content)).resize((512, 384),
                                                       Image.ANTIALIAS)
    filename = "./ml-model/data/img.jpg"
    img.save(filename)

    learn = load_learner("./ml-model/")

    category = str(learn.predict(open_image(filename))[0])
    tensor_probs = learn.predict(open_image(filename))[2]
    pred_probs = {
        "cardboard": round(float(tensor_probs[0]), 2),
        "glass": round(float(tensor_probs[1]), 2),
        "metal": round(float(tensor_probs[2]), 2),
        "paper": round(float(tensor_probs[3]), 2),
        "plastic": round(float(tensor_probs[4]), 2),
        "trash": round(float(tensor_probs[5]), 2)
    }
    ans = {"url": url, "category": category, "pred_probs": pred_probs}

    return ans
Ejemplo n.º 5
0
def predicting_classes(image_rgb, weights=WEIGHTS_CLASSES):
    """Predicts position and gender of the lepidopteran in `image_rgb`,
    according to `weights`.

    Parameters
    ----------
    image_rgb : 3D array
        RGB image of the lepidopteran (ruler and tags cropped out).
    weights : str or pathlib.Path
        Path of the file containing weights.

    Returns
    -------
    prediction : string
        Prediction obtained with the given weights, between the classes
        `female`, `male`, or `upside_down`.
    probabilities : 1D array
        Probabilities for the prediction returned by the network for each
        class.

    Notes
    -----
    If a string is given in `weights`, it will be converted into a pathlib.Path
    object.
    """
    if isinstance(weights, str):
        weights = Path(weights)

    connection.download_weights(weights)

    # parameters here were defined when training the networks.
    learner = load_learner(fname=weights)

    prediction, _, probabilities = learner.predict(image_rgb)

    return prediction, probabilities
Ejemplo n.º 6
0
def binarization(image_rgb, weights=WEIGHTS_BIN):
    """Extract the shape of the elements in an input image using the U-net
    deep learning architecture.

    Parameters
    ----------
    image_rgb : (M, N, 3) ndarray
        Input RGB image of a lepidopteran, with ruler and tags.
    weights : str or pathlib.Path
        Path of the file containing weights for segmentation.

    Returns
    -------
    tags_bin : (M, N) ndarray
        Binary image containing tags in the input image.
    ruler_bin : (M, N) ndarray
        Binary image containing the ruler in the input image.
    lepidop_bin : (M, N) ndarray
        Binary image containing the lepidopteran in the input image.
    """
    if isinstance(weights, str):
        weights = Path(weights)

    connection.download_weights(weights)
    learner = load_learner(fname=weights)

    print('Processing U-net...')
    _, _, classes = learner.predict(image_rgb)
    _, tags_bin, ruler_bin, lepidop_bin = classes[:4]

    # rescale the predicted images back up and binarize them.
    tags_bin = img_as_bool(_rescale_image(image_rgb, tags_bin))
    ruler_bin = img_as_bool(_rescale_image(image_rgb, ruler_bin))
    lepidop_bin = img_as_bool(_rescale_image(image_rgb, lepidop_bin))

    return tags_bin, ruler_bin, lepidop_bin
Ejemplo n.º 7
0
from fastai.vision import open_image
from fastai.vision.learner import load_learner
import sys

#defaults.device = torch.device('cpu')
if (len(sys.argv) != 2):
    print("USAGE: classify.py <path to image>")
    sys.exit(1)

img = open_image(sys.argv[1])
learn = load_learner(".", fname="its_raining_men.pkl")

pred_class,pred_idx,outputs = learn.predict(img)
print("p(ramen) = %1.2f, p(soba) = %1.2f, p(udon) = %1.2f. I think this is %s." % (outputs[0],outputs[1],outputs[2],pred_class))

Ejemplo n.º 8
0
# In[ ]:


learn.save("/content/drive/My Drive/data/models/model3")


# In[ ]:


learn.export("/content/drive/My Drive/data/models/model3.pkl")


# In[ ]:


learn = load_learner("/content/drive/My Drive/data/models/")


# In[ ]:


learn.load("/content/drive/My Drive/data/models/model3")


# In[49]:


learn.predict(open_image("stack-of-paper.jpg"))


# In[ ]: