def grow(res_increase, res_decrease):
     x = lambda: from_rgb(layers.downscale2d(inputs, 2**res_decrease), res_increase)
     if res_decrease > 0:
         x = utils.cset(
             x,
             (res_training > res_increase),
             lambda: grow(res_increase+1, res_decrease-1))
     x = block(x(), res_increase); y = lambda: x
     if res_increase > 2:
         y = utils.cset(
             y,
             (res_training < res_increase),
             lambda: utils.lerp(x, from_rgb(layers.downscale2d(inputs, 2**(res_decrease+1)), res_increase-1), res_increase-res_training))
     return y()
Ejemplo n.º 2
0
 def from_rgb(x, number):
     with tf.compat.v1.variable_scope('Input_{}'.format(number),
                                      reuse=tf.compat.v1.AUTO_REUSE):
         x = layers.downscale2d(x, factor=2**(res_building - number))
         x = layers.conv2d(x, fmaps=latent_size, kernel=1)
         x = BA(x)
     return x
Ejemplo n.º 3
0
def dummy(inputs, regularizer_rate=0):
    def BAN(x):
        x = layers.bias(x, regularizer_rate=regularizer_rate)
        x = tf.nn.selu(x)
        return x

    def conv_layer(name, x, fmaps, kernel=3, strides=1, padding='SAME'):
        with tf.compat.v1.variable_scope('Conv2D_{}'.format(name)):
            x = layers.conv2d(x,
                              fmaps=fmaps,
                              kernel=kernel,
                              strides=strides,
                              padding=padding,
                              regularizer_rate=regularizer_rate)
            x = BAN(x)
        return x

    def dense_layer(x, fmaps, name=0, use_bias=True):
        with tf.compat.v1.variable_scope('Dense_{}'.format(name)):
            x = layers.dense(x, fmaps=fmaps, regularizer_rate=regularizer_rate)
            if use_bias: x = layers.bias(x, regularizer_rate=regularizer_rate)
        return x

    x = conv_layer('inputs', x=inputs, fmaps=64, kernel=1)
    fmaps = [64, 128, 256]
    for i in range(len(fmaps)):
        x = conv_layer(name=i * 2, x=x, fmaps=fmaps[i])
        x = conv_layer(name=i * 2 + 1, x=x, fmaps=fmaps[i])
        if i < (len(fmaps) - 1): x = layers.downscale2d(x)
    x = dense_layer(x, fmaps=1, name='0', use_bias=False)
    x = layers.alpha_dropout(x, rate=0.2)
    x = tf.compat.v1.nn.l2_normalize(x, axis=1)
    return x
Ejemplo n.º 4
0
def msg_gan(image_inputs, noise_inputs, latent_size, res_building,
            minibatch_size):
    # Multi-scaled input images
    real_inputs = []
    for factor in [2**res for res in range(3, -1, -1)]:
        real_input = layers.downscale2d(image_inputs, factor=factor)
        real_input = layers.upscale2d(real_input, factor=factor)
        real_inputs += [real_input]
    # Define networks
    generator = network.Network('generator',
                                msg_generator,
                                noise_inputs,
                                res_building=res_building,
                                latent_size=latent_size)
    discriminator = network.Network('discriminator',
                                    msg_discriminator,
                                    real_inputs,
                                    res_building=res_building,
                                    latent_size=latent_size)
    # Retrieve network outputs
    fake_images = generator(noise_inputs)
    fake_outputs = discriminator(fake_images)
    real_outputs = discriminator(real_inputs)
    # Losses
    gen_loss, disc_loss = losses.RelativisticAverageBCE(
        real_outputs, fake_outputs)
    disc_loss += losses.GradientPenaltyMSG(discriminator, real_inputs,
                                           fake_images, minibatch_size)
    # disc_loss += losses.EpsilonPenalty(real_outputs)
    return gen_loss, disc_loss, fake_images
 def block(x, res):
     with tf.compat.v1.variable_scope('Block_{}'.format(res)):
         if res==2:
             x = layers.minibatch_stddev_layer(x)
             x = conv_layer(x, number=0, fmaps=latent_size)
             x = dense_layer(x, fmaps=latent_size, number=1)
             x = dense_layer(x, fmaps=1, number=0)
         else:
             x = conv_layer(x, number='{}_0'.format(res), fmaps=nbof_fmaps(res))
             x = conv_layer(x, number='{}_1'.format(res), fmaps=nbof_fmaps(res-1))
             x = layers.downscale2d(x)
     return x