Ejemplo n.º 1
0
def test_lpt1():
    """ Checking lpt1, this also checks the laplace and gradient kernels
  """
    pm = ParticleMesh(BoxSize=bs, Nmesh=[nc, nc, nc], dtype='f4')
    grid = pm.generate_uniform_particle_grid(shift=0).astype(np.float32)

    whitec = pm.generate_whitenoise(100, mode='complex', unitary=False)
    lineark = whitec.apply(lambda k, v: Planck15.get_pklin(
        sum(ki**2 for ki in k)**0.5, 0)**0.5 * v / v.BoxSize.prod()**0.5)

    # Compute lpt1 from fastpm with matching kernel order
    lpt = fpmops.lpt1(lineark, grid)

    # Same thing from tensorflow
    tfread = tfpm.lpt1(
        pmutils.r2c3d(tf.expand_dims(np.array(lineark.c2r()), axis=0)),
        grid.reshape((1, -1, 3)) * nc / bs).numpy()

    assert_allclose(lpt, tfread[0] * bs / nc, atol=1e-5)
Ejemplo n.º 2
0
def test_lpt1_64():
    """ Checking lpt1, this also checks the laplace and gradient kernels
  This variant of the test checks that it works for cubes of size 64
  """
    nc = 64
    pm = ParticleMesh(BoxSize=bs, Nmesh=[nc, nc, nc], dtype='f4')
    grid = pm.generate_uniform_particle_grid(shift=0).astype(np.float32)

    whitec = pm.generate_whitenoise(100, mode='complex', unitary=False)
    lineark = whitec.apply(lambda k, v: Planck15.get_pklin(
        sum(ki**2 for ki in k)**0.5, 0)**0.5 * v / v.BoxSize.prod()**0.5)

    # Compute lpt1 from fastpm with matching kernel order
    lpt = fpmops.lpt1(lineark, grid)

    # Same thing from tensorflow
    with tf.Session() as sess:
        state = tfpm.lpt1(
            pmutils.r2c3d(tf.expand_dims(tf.constant(lineark.c2r()), axis=0)),
            grid.reshape((1, -1, 3)) * nc / bs)
        tfread = sess.run(state)

    assert_allclose(lpt, tfread[0] * bs / nc, atol=5e-5)
Ejemplo n.º 3
0
    dx1, dx2 = fastpm.lpt(rhok, q, pm)
    dx, p, f = fastpm.nbody(rhok, q, [0.1, 0.6, 1.0], Planck15, pm)
    dx0, p0, f0 = fastpm.nbody(rhok, q, [0.1], Planck15, pm)
    model.output(dx1=dx1, dx2=dx2, dx=dx, p=p, dx0=dx0, p0=p0, f0=f0, f=f)

wn = pm.generate_whitenoise(555, unitary=True)
x = wn[...]

x = numpy.stack([x.real, x.imag], -1)

from fastpm.core import Solver, leapfrog

solver = Solver(pm, Planck15, B=1)
linear = solver.linear(wn, powerspectrum)

dx1_f = lpt1(linear, q)
dx2_f = lpt1(lpt2source(linear), q)
lpt = solver.lpt(linear, Q=q, a=0.1)

print('comparing lpt order by order')

dx1, dx2 = model.compute(['dx1', 'dx2'], init=dict(x=x))

print('model', dx1.std(axis=0), dx2.std(axis=0))
print('fastpm', dx1_f.std(axis=0), dx2_f.std(axis=0))
print('model', dx1[0], dx2[0])
print('fastpm', dx1_f[0], dx2_f[0])

print('comparing lpt dx and p ')
dx0, p0 = model.compute(['dx0', 'p0'], init=dict(x=x))
print('model', dx0.std(axis=0), p0.std(axis=0))