Ejemplo n.º 1
0
def predict_seismic(moho, lat, lon):
    """
    Calculate the predicted Moho depth at the seismic points
    from the estimated model.

    Values are interpolated onto (lat, lon) from the given 'moho'.
    """
    estimated = gridder.interp_at(moho.clat.ravel(), moho.clon.ravel(), moho.relief,
                                  lat, lon, extrapolate=True)
    return estimated
area = (lat.min(), lat.max(), lon.min(), lon.max())
sediments = {
    'lon': lon,
    'lat': lat,
    'thickness': thickness,
    'shape': shape,
    'area': area
}

# Create top and bottom of sediments layer
# ----------------------------------------
# Regrid dem to sediments regular grid
sediments_top = gridder.interp_at(topography["lat"],
                                  topography["lon"],
                                  topography["topo"],
                                  sediments["lat"],
                                  sediments["lon"],
                                  algorithm="linear")
sediments_top[np.isnan(sediments["thickness"])] = np.nan
# Compute the median of the topography on basin points
nans = np.isnan(sediments_top)
sediments_top[~nans] = np.median(sediments_top[~nans])
# Add top and bottom arrays to sediments dictionary
sediments["top"] = sediments_top
sediments["bottom"] = sediments_top - sediments["thickness"]

# Create Tesseroids model of the sediments layer
# ----------------------------------------------
bottom, top = sediments["bottom"].copy(), sediments["top"].copy()
top[nans] = 0
bottom[nans] = 0
Ejemplo n.º 3
0
    p1, p2 = p

    #%%
    # find point position with respect to line equation defined by p1 and p2
    U_a, p_a, bool_above, U_b, p_b = MALM.isabove(xp, yp, Uini, np.array(p1),
                                                  np.array(p2))
    # Compute p1 and p2 line equation ax + by + c = 0
    a, b, c = MALM.slope(p1, p2)

    # Mirror points with respect to p1p2 line
    Umirror, xy_mirror = MALM.mirrorU_alongLine(U_a, p_a, bool_above, a, b, c)

    U_a_int = gridder.interp_at(xy_mirror[:, 0],
                                xy_mirror[:, 1],
                                Umirror,
                                xp,
                                yp,
                                algorithm='cubic',
                                extrapolate=True)
    # U_mirror_int = np.copy(U_a_int)
    U_mirror_int = np.copy(Uini)
    U_mirror_int[np.where(bool_above == True)[0]] = U_a_int[np.where(
        bool_above == True)[0]]

    plt.figure()
    plt.scatter(xp, yp, c=U_mirror_int, cmap='viridis', vmax=0.25)
    plt.colorbar()
    plt.axis('square')
    plt.show()

    #%% choose raw or mirrored field
Ejemplo n.º 4
0
p1, p2 = p

#%%
# find point position with respect to line equation defined by p1 and p2
U_a, p_a, bool_above, U_b, p_b = MALM.isabove(xp_r, yp_r, Uini, np.array(p1),
                                              np.array(p2))
# Compute p1 and p2 line equation ax + by + c = 0
a, b, c = MALM.slope(p1, p2)

# Mirror points with respect to p1p2 line
Umirror, xy_mirror = MALM.mirrorU_alongLine(U_a, p_a, bool_above, a, b, c)

U_a_int = gridder.interp_at(xy_mirror[:, 0],
                            xy_mirror[:, 1],
                            Umirror,
                            xp_r,
                            yp_r,
                            algorithm='nearest',
                            extrapolate=True)
U = np.copy(Uini)
U[np.where(bool_above == True)[0]] = U_a_int[np.where(bool_above == True)[0]]
plt.figure()
plt.scatter(xp_r, yp_r, c=U, cmap='viridis', vmax=0.25)
plt.colorbar()
plt.axis('square')
plt.show()

plt.figure()
plt.scatter(xp_r, yp_r, c=U_a_int, cmap='viridis', vmax=0.25)
plt.colorbar()
plt.axis('square')
Ejemplo n.º 5
0
def load_MALM_LandfillPorto(path,
                            filename,
                            shape=None,
                            field=True,
                            interp=True,
                            radius=20):

    if field == True:

        file = open(path + 'PortoM.pkl', 'rb')
        u = pickle._Unpickler(file)
        u.encoding = 'latin1'
        data_struct = u.load()

        data_struct['HZ']
        xA = (data_struct['HZ'][0][0] + data_struct['HZ'][0][1]) / 2
        yA = data_struct['HZ'][0][2]
        AnoPos = [xA, yA]

        # x , y, z, U_raw  = load_field_u_LandfillPorto(path, filename + '_uz0.dat')
        print('load' + str(path + filename) + '_uz0_grid.dat')
        x, y, z, U_raw = np.loadtxt(path + filename + '_uz0_grid.dat',
                                    unpack=True)
        # x , y, z = mesh_xyz
        # ------------------------------- Plot the data
        # plt.figure()
        # plt.scatter(x, y,c=U_raw, cmap='viridis',vmin=None, vmax=1)
        # plt.colorbar()
        # plt.axis('square')
        # plt.show()

    else:
        U_raw = load_obs(path, filename + '.txt')  # load observation data
        RemLineNb, Injection, coordE, pointsE = load_geom(
            path)  # find the geom file in the folder path
        nb, x, y, z = np.array(coordE[:-3]).T
        AnoPos = []
        data_struct = []

    # path2files="example_2add_later/Landfill_3d/Ano_0_E13/" # Test elec outside landfill
    # # path2files="example_2add_later/Landfill_3d/Ano_0_E89/" # Test 2 elec outside landfill
    # # path2files="example_2add_later/Landfill_3d/Ano_0_EA/"  # Real A position without anomaly
    # # path2files="example_2add_later/Landfill_3d/Ano_1_BH_EA/"  # Real A position with big hole anomaly
    # path2files="example_2add_later/Landfill_3d/Ano_1_SH_EA/"  # Real A position  with small hole anomaly
    # # path2files="examples/Landfill_3d/RealData_Ano_0/"  # Real data / without anomaly
    # # path2files="examples/Landfill_3d/RealData_Ano_1_SH/"  # Real data / with (small) anomaly
    # -----------------------------------------------------------------------------------------

    if shape is None:
        shape = (31, 31)
    else:
        shape = shape

    # print(AnoPosxAyA)
    coords_liner, p1, p2, B = definep1p2(path, radius, AnoPos)
    xnew, ynew = creategrid(coords_liner, B, shape)

    # ------------- Raw data   -----------------------------------------

    # pEXP.plot_line(x, y, U_raw,p1,p2, title='U_raw', interp=interp) #, vmin=0.01, vmax=0.1,
    print(len(x))
    print(len(U_raw))
    print(len(xnew))

    # ------------- Interpolation  -----------------------------------------
    U_int = gridder.interp_at(x,
                              y,
                              U_raw,
                              xnew,
                              ynew,
                              algorithm='cubic',
                              extrapolate=True)
    # xp,yp,U_int = gridder.interp(xnew,ynew,U,shape)

    # pEXP.plot_line(xnew, ynew, U_int,p1,p2,title='U_int', interp=interp)

    # ------------- correction of B  + interpolation  ----------------------
    # remove influence of B
    if field == False:
        Ucor = uEXP.cor_field_B(x, y, z, U_raw, B, rho=10)
    else:
        Ucor = U_raw

    Ucor_int = gridder.interp_at(x,
                                 y,
                                 Ucor,
                                 xnew,
                                 ynew,
                                 algorithm='cubic',
                                 extrapolate=True)
    # xp,yp,Ucor_int = gridder.interp(xnew,ynew,Ucorint_tmp,shape)
    # pEXP.plot_line(xnew, ynew, Ucor_int,p1,p2, title='U_cor&int', interp=interp)

    # --------------- plot 2d maps -----------------------------------------
    # plt.figure(figsize=(20,10))

    # plt.subplot(2,2,1)
    # plt.tricontourf(x, y, U_raw, 50, cmap='viridis', vmin = 0.01, vmax = 1)
    # cbar = plt.colorbar(orientation='vertical', aspect=50)
    # cbar.set_label('$u_{B}$ (V)')
    # plt.plot(coords_liner[:,0],coords_liner[:,1],'*-')
    # plt.axis('square')

    # plt.subplot(2,2,2)
    # plt.tricontourf(x, y, Ucor, 50, cmap='viridis', vmin = 0.01, vmax = 1)
    # cbar = plt.colorbar(orientation='vertical', aspect=50)
    # cbar.set_label('$u_{Bcor}$ (V)')
    # plt.plot(coords_liner[:,0],coords_liner[:,1],'*-')
    # plt.axis('square')

    # plt.subplot(2,2,3)
    # plt.tricontourf(xnew, ynew, U_int, 50, cmap='viridis', vmin = 0.01, vmax = 1)
    # cbar = plt.colorbar(orientation='vertical', aspect=50)
    # cbar.set_label('$u_{Binterp}$ (V)')
    # plt.plot(coords_liner[:,0],coords_liner[:,1],'*-')
    # plt.axis('square')

    # plt.subplot(2,2,4)
    # plt.tricontourf(xp, yp, Ucor_int, 50, cmap='viridis', vmin = 0.01, vmax = 1)
    # cbar = plt.colorbar(orientation='vertical', aspect=50)
    # cbar.set_label('$u_{Bint&cor}$ (V)')
    # plt.plot(coords_liner[:,0],coords_liner[:,1],'*-')
    # plt.axis('square')

    # ---------------------------------------
    zp = 0
    z = zp
    # ---------------------------------------

    p = [p1, p2]
    U = [U_raw, Ucor, U_int, Ucor_int]
    coord_xyz = [x, y, z]
    coord_xyz_int = [xnew, ynew, zp]

    max_elevation = 50

    return coord_xyz, coord_xyz_int, U, coords_liner, shape, max_elevation, p, data_struct
Ejemplo n.º 6
0
#%% Mirror field against p1p2

# find point position with respect to line equation defined by p1 and p2
U_af, p_af, bool_abovef, U_bf, p_bf = MALM.isabove(xf, yf, uf, np.array(p1),
                                                   np.array(p2))
# Compute p1 and p2 line equation ax + by + c = 0
af, bf, cf = MALM.slope(p1, p2)

# Mirror points with respect to p1p2 line
Umirrorf, xy_mirrorf = MALM.mirrorU_alongLine(U_af, p_af, bool_abovef, af, bf,
                                              cf)

U_a_intf = gridder.interp_at(xy_mirrorf[:, 0],
                             xy_mirrorf[:, 1],
                             Umirrorf,
                             xf,
                             yf,
                             algorithm='cubic',
                             extrapolate=True)
# U_mirror_int = np.copy(U_a_int)
U_mirror_intf = np.copy(uf)
U_mirror_intf[np.where(bool_abovef == True)[0]] = U_a_intf[np.where(
    bool_abovef == True)[0]]

xf_mirror = np.hstack([xy_mirrorf[:, 0], p_af[:, 0]])
yf_mirror = np.hstack([xy_mirrorf[:, 1], p_af[:, 1]])
uf_mirror = np.hstack([Umirrorf, U_af])

#%% choose raw or mirrored field

Uf = np.copy(uf)
Ejemplo n.º 7
0
plt.xlabel('x (m)')
plt.ylabel('y (m)')

prl = 60
# shape = shape  (max(xp)-min(xp))/
# shape = (115,115)
xint_scipy, yint_scipy = gridder.regular(
    (min(xp) - prl, max(xp) + prl, min(yp) - prl, max(yp) + prl), shape=shape)

#%% Solution 1
# extrapolate False and fill with 0 before derivative - mask them later on
U_int_scipy = gridder.interp_at(xp,
                                yp,
                                U,
                                xint_scipy,
                                yint_scipy,
                                algorithm='cubic',
                                extrapolate=False)
InterpData = np.array([xint_scipy, yint_scipy, U_int_scipy]).T
where_are_NaNs = np.isnan(InterpData)
InterpData[where_are_NaNs] = 0.0074
xint_scipy, yint_scipy, U_int_scipy = InterpData.T

plt.scatter(xint_scipy, yint_scipy)
plt.scatter(xp, yp)

#%% Solution 2
# Extrapolate = True
# U_int_scipy = gridder.interp_at(xp,yp,U, xint_scipy, yint_scipy, algorithm='cubic', extrapolate=True)