Ejemplo n.º 1
0
def test_rosen_python():
    popsize = 31
    dim = 5
    testfun = Rosen(dim)
    sdevs = [1.0] * dim
    max_eval = 100000

    limit = 0.00001
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        ret = cmaes.minimize(wrapper.eval,
                             testfun.bounds,
                             input_sigma=sdevs,
                             max_evaluations=max_eval,
                             popsize=popsize)
        if limit > ret.fun:
            break

    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize >= ret.nfev)  # too much function calls
    assert (max_eval / popsize + 2 > ret.nit)  # too much iterations
    assert (ret.nfev == wrapper.get_count()
            )  # wrong number of function calls returned
    assert (almost_equal(ret.x, wrapper.get_best_x()))  # wrong best X returned
    assert (ret.fun == wrapper.get_best_y())  # wrong best y returned
Ejemplo n.º 2
0
def test_rosen_ask_tell():
    popsize = 31
    dim = 5
    testfun = Rosen(dim)
    sdevs = [1.0] * dim
    max_eval = 100000
    limit = 0.00001
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        es = cmaes.Cmaes(testfun.bounds, popsize=popsize, input_sigma=sdevs)
        iters = max_eval // popsize
        for j in range(iters):
            xs = es.ask()
            ys = [wrapper.eval(x) for x in xs]
            stop = es.tell(ys)
            if stop != 0:
                break
        ret = OptimizeResult(x=es.best_x,
                             fun=es.best_value,
                             nfev=wrapper.get_count(),
                             nit=es.iterations,
                             status=es.stop)
        if limit > ret.fun:
            break
    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize >= ret.nfev)  # too much function calls
    assert (max_eval / popsize + 2 > ret.nit)  # too much iterations
Ejemplo n.º 3
0
def test_rosen_ask_tell_de():
    popsize = 8
    dim = 2
    testfun = Rosen(dim)
    max_eval = 10000
    limit = 0.00001
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        es = de.DE(dim, testfun.bounds, popsize=popsize)
        iters = max_eval // popsize
        for j in range(iters):
            xs = es.ask()
            ys = [wrapper.eval(x) for x in xs]
            stop = es.tell(ys, xs)
            if stop != 0:
                break
        ret = OptimizeResult(x=es.best_x,
                             fun=es.best_value,
                             nfev=wrapper.get_count(),
                             nit=es.iterations,
                             status=es.stop)
        if limit > ret.fun:
            break
    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + 2 * popsize >= ret.nfev)  # too much function calls
    assert (max_eval / popsize + 2 > ret.nit)  # too much iterations
    #     assert(almost_equal(ret.x, wrapper.get_best_x())) # wrong best X returned
    assert (almost_equal(ret.fun, wrapper.get_best_y(),
                         eps=1E-1))  # wrong best y returned
Ejemplo n.º 4
0
def test_rosen_decpp_parallel():
    popsize = 8
    dim = 2
    testfun = Rosen(dim)
    max_eval = 10000
    limit = 0.01
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        ret = decpp.minimize(wrapper.eval,
                             dim,
                             testfun.bounds,
                             max_evaluations=max_eval,
                             popsize=popsize,
                             workers=popsize)
        if limit > ret.fun:
            break

    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize >= ret.nfev)  # too much function calls
    assert (max_eval // popsize + 2 > ret.nit)  # too much iterations
    #assert(ret.nfev == wrapper.get_count()) # wrong number of function calls returned
    assert (almost_equal(ret.x, wrapper.get_best_x(),
                         eps=1E-2))  # wrong best X returned
    assert (almost_equal(ret.fun, wrapper.get_best_y(),
                         eps=1E-2))  # wrong best y returned
Ejemplo n.º 5
0
def test_rosen_cpp_parallel():
    popsize = 8
    dim = 2
    testfun = Rosen(dim)
    sdevs = [1.0] * dim
    max_eval = 10000

    limit = 0.00001
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        ret = cmaescpp.minimize(wrapper.eval,
                                testfun.bounds,
                                input_sigma=sdevs,
                                max_evaluations=max_eval,
                                popsize=popsize,
                                workers=popsize)
        if limit > ret.fun:
            break

    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize >= ret.nfev)  # too much function calls
    assert (max_eval // popsize + 2 > ret.nit)  # too much iterations
    assert (almost_equal(ret.x, wrapper.get_best_x()))  # wrong best X returned
    assert (almost_equal(ret.fun, wrapper.get_best_y(),
                         eps=1E-1))  # wrong best y returned
Ejemplo n.º 6
0
def test_rosen_parallel():
    # parallel execution slows down the test since we are using a test function
    # which is very fast to evaluate
    # popsize defines the maximal number of used threads
    
    #windows cannot pickle function objects
    if sys.platform.startswith('windows'):
        return

    popsize = 8
    dim = 2
    testfun = Rosen(dim)
    sdevs = [1.0]*dim
    max_eval = 10000
    
    limit = 0.00001   
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        ret = cmaes.minimize(wrapper.eval, testfun.bounds, input_sigma = sdevs, 
                       max_evaluations = max_eval, 
                       popsize=popsize, is_parallel=True)
        if limit > ret.fun:
            break
       
    assert(limit > ret.fun) # optimization target not reached
    assert(max_eval + popsize > ret.nfev) # too much function calls
    assert(max_eval // popsize + 2 > ret.nit) # too much iterations
    assert(ret.nfev == wrapper.get_count()) # wrong number of function calls returned
    assert(almost_equal(ret.x, wrapper.get_best_x())) # wrong best X returned
    assert(ret.fun == wrapper.get_best_y()) # wrong best y returned
Ejemplo n.º 7
0
def test_rosen_cpp():
    if not sys.platform.startswith('linux'):
        return
    popsize = 31
    dim = 5
    testfun = Rosen(dim)
    sdevs = [1.0] * dim
    max_eval = 100000

    limit = 0.00001
    for i in range(5):
        wrapper = Wrapper(testfun.func, dim)
        ret = cmaescpp.minimize(wrapper.eval,
                                testfun.bounds,
                                input_sigma=sdevs,
                                max_evaluations=max_eval,
                                popsize=popsize)
        if limit > ret.fun:
            break

    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize > ret.nfev)  # too much function calls
    assert (ret.nfev == wrapper.get_count()
            )  # wrong number of function calls returned
    assert (almost_equal(ret.x, wrapper.get_best_x()))  # wrong best X returned
    assert (ret.fun == wrapper.get_best_y())  # wrong best y returned
Ejemplo n.º 8
0
def test_rosen_de_delayed():
    popsize = 8
    dim = 2
    testfun = Rosen(dim)
    max_eval = 10000
    limit = 0.01
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        ret = de.minimize(wrapper.eval,
                          dim,
                          testfun.bounds,
                          max_evaluations=max_eval,
                          popsize=popsize,
                          workers=popsize)
        if limit > ret.fun:
            break

    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize >= ret.nfev)  # too much function calls
    assert (max_eval // popsize + 2 > ret.nit)  # too much iterations
    assert (ret.nfev == wrapper.get_count()
            )  # wrong number of function calls returned
Ejemplo n.º 9
0
def test_rosen_delayed():
    popsize = 8
    dim = 2
    testfun = Rosen(dim)
    sdevs = [1.0] * dim
    max_eval = 10000

    limit = 0.00001
    for _ in range(5):
        wrapper = Wrapper(testfun.fun, dim)
        ret = cmaes.minimize(wrapper.eval,
                             testfun.bounds,
                             input_sigma=sdevs,
                             max_evaluations=max_eval,
                             popsize=popsize,
                             workers=popsize,
                             delayed_update=True)
        if limit > ret.fun:
            break

    assert (limit > ret.fun)  # optimization target not reached
    assert (max_eval + popsize >= ret.nfev)  # too much function calls
    assert (max_eval // popsize + 2 > ret.nit)  # too much iterations